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Abstract

Geotechnical engineering involves the study of earth materials for construction

purposes. A site investigation (S.I.) is an essential preliminary to the construction

process, by which geological conditions, geotechnical parameters, and other relevant

information which may affect the construction or performance of a civil engineering

or building project, are acquired.

This thesis outlines work carried out at the School of Engineering, University of

Durham, to apply Knowledge Based Systems techniques to the field of Site

Investigation in order to ascertain their usefulness and applicability. To this end a

Knowledge Based System (KBS) called SIGMA, System for the Interpretation of Site

Investigation Information, has been developed. SIGMA has as its core a relational

database to store all aspects of a site investigation, known as GeoTec. SIGMA also

contains a number of knowledge bases which hold knowledge about the ground,

geotechnical tests and correlations between geotechnical parameters.

SIGMA provides two aspects of interpretation (i) interpretation of design parameters

from laboratory and field test results and (ii) the interpretation of ground conditions

from borehole records. The first aspect of interpretation is the derivation of design

parameters from laboratory or field tests. Values may also be assessed from other

qualitative information, such as engineering descriptions of the ground, if quantitative

data are not available. An important aspect of the assessment will be data validation

by cross-checking of measurements to ensure consistency.

The second aspect involves the interpretation of the ground conditions between the

points at which observations are being made (boreholes etc.). The system will
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generate an interpretation from the borehole logs by tracing layers across a site and

building up a picture of the ground conditions on a borehole to borehole level.

SIGMA's aim is to provide geotechnical engineers with a decision support system that

assists them in coming to a decision on the choice of a particular value for a parameter

or on a particular interpretation of the ground conditions. In addition SIGMA can

provide an important data management role, storing, checking and manipulating the

large quantities of data produced from a site investigation. Importantly, SIGMA

leaves all the decision making to the geotechnical specialist using the system. Its role

is to provide access to as much data as possible from which to form conclusions and

to make available a wealth of relevant knowledge.
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Chapter 1

Introduction

1.1 General

Geotechnical engineering involves the study of earth materials for construction

purposes (Institute of Civil Engineers, 1991). The decision to develop a particular site

cannot always be taken from a purely engineering viewpoint; geotechnical problems

also require the assessment of geological conditions for their solution. A site

investigation (S.I.) is an essential preliminary to the construction process, by which

these geological conditions, geotechnical parameters, and other relevant information

which may affect the construction or performance of a civil engineering or building

project, are acquired (British Standards 5930, 1981). The term site investigation is

used to encompass the whole process as a preliminary to construction. Throughout

this thesis the term ground investigation (G.I.) is used to define those aspects of a S.I.

that address themselves solely to sub-surface issues.

A site investigation is capable of producing a wealth of information and such data can

be utilised by the geotechnical specialist to ascertain the subsurface ground conditions

and values of required geotechnical parameters. The need to effectively manage and

control this data has long been recognised, as the following quotation by G.S.

Littlejohn in 1990 (Institute of Civil Engineers, 1991) reflects:

"Factual ground investigation data should be digitised by geotechnical specialists to a

nationally agreed standard for ease of processing and transfer by computer. This

should reduce significantly the time required to sort and assess the large amount of

data generated by comprehensive ground investigations."



The interpretation of this ground investigation data to produce a good understanding

of sub surface conditions is one of the main tasks of the geotechnical specialist. This

interpretation is carried out by applying experience gained from previous

investigations, a knowledge of the site, published literature and the assistance of

fellow experts to arrive at suitable hypothesises. As the quantity of the S.I. data

increases so does the usefulness of any tools that can assist the engineer or geologist

in carrying out this task. Knowledge Based Systems, KBS, can provide this

assistance by offering a structured representation of domain knowledge, database

access and routines that can assist the user in the carrying out of individual

interpretation tasks. Domain knowledge is that knowledge which concerns a

particular area - in this case the ground.

A KBS has been developed to assist the geotechnical specialist, which is known as

SIGMA, System for the Interpretation of Geotechnical Information. SIGMA aims to

provide a decision support role for the geotechnical specialist, allowing situations to

be assessed in detail before design stage decisions are reached. SIGMA is described

in detail in this thesis along with a discussion of the topics that effect the

implementation, design and use of this and similar systems. At the core of SIGMA is

the GeoTec database, a relational database capable of storing the data produced from a

ground investigation.

SIGMA's role is twofold - to assist in the data management of a site investigation and

to assist in the interpretation of the data produced from the investigation. The data

management role of SIGMA revolves around the GeoTec database. Modelled on the

Association of Geotechnical Specialists (AGS) Electronic Transfer of Geotechnical

Data from Ground Investigations (AGS, 1992), the database has been implemented

using the INGRES database (INGRES, 1990a). GeoTec can store all the data

emanating from a ground investigation including multi-level test data. In addition
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GeoTec has a structure to store the complex result of a parsed (broken down into

constituent terms) layer description. This parsing is carried out by a module within

SIGMA. Interfaces allowing access to the data via SIGMA, data checking routines

and direct entry of AGS files all assist in the overall data management of a site

investigation. In addition, being mounted on a Sun Sparc2 workstation, the database

can be accessed by several users instantaneously from different locations, utilising the

networking facilities of both INGRES and the Sun workstation.

SIGMA's second role is that of data interpretation. A parameter assessment module

allows ground investigation data to be interrogated via SIGMA in order to identify the

value of design parameters at specific locations. If the required parameter has not

been recorded at a specific location, other measured data may be correlated to the

required parameter in order to give the geotechnical specialist a better basis for their

assessment. A borehole interpolation module allows borehole to borehole correlations

to be carried out based on the parsed layer description data stored in the GeoTec

database. Site wide marker beds are identified allowing a greater understanding of the

sub-surface ground conditions.

SIGMA has been designed as a Decision Support System, that is it attempts to

provide support to a geotechnical specialist in their decision making process. SIGMA

does not have the functionality to change any data resident in the database without the

specific authority of the user. Any interpretation results are displayed to the user in

order to assist their decisions, not make that decision in their place.

1.2 An Overview of the Thesis

A definition of Knowledge Based Systems (KBSs) is given in Chapter 2, outlining the

fundamental principles and main components. This is followed by an introduction to

3



Database Management Systems (DBMS) and Relational Database Management

Systems (RDBMS). The manner in which RDBMS and KBS can be combined is then

outlined by an examination of the varying linkage options. This leads on to a

discussion of the emerging area of Knowledge Based Management Systems (KBMS).

The chapter concludes with a discussion of the importance of ensuring the correct

design of the interfaces to such systems as SIGMA and an introduction to the different

methodologies available.

Chapter 3 outlines those Geotechnical KBS's that have specifically addressed

themselves to site characterisation. A full literature review of all geotechnical KBS's

was deemed outside the scope of this thesis. This is followed by a discussion of

geotechnical databases, starting from the early punch card systems through to today's

site specific Personal Computer (PC) based data management systems. The chapter is

concluded with a discussion of the advantages of operating a national borehole

database.

Chapter 4 covers the development tools that were used in producing SIGMA. The

selection criteria for choosing a hardware platform are discussed along with the system

finally chosen, the Sun Sparc2 workstation. This is followed by a description of the

various types of software tools available for developing KBSs and a detailed

illustration of the development environment finally chosen, ProKappa (IntelliCorp,

1991). The chapter concludes with a description of the RDBMS used for the

development of the GeoTec database.

Chapter 5 gives an introduction and a basic description of the functionality of

SIGMA. The dual roles of SIGMA, that is data management and data interpretation

are discussed in detail. An overview of SIGMA is then given, covering the core role

of the GeoTec database, the knowledge bases and the type and structure of the

4
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knowledge stored therein. The processing and analysis modules are mentioned as an

introduction to the following chapters in which they are covered in detail.

A full description of the GeoTec database is given in Chapter 6. The design history of

is followed by a detailed description of the GeoTec database, its design methodology

and final data structure. GeoTec's ability to store parsed soils description information

and the ability to store multi-level test data is fully explained. The chapter concludes

with a description of the mechanism by which the GeoTec database communicates

with SIGMA.

Chapter 7 covers the data handling aspects of SIGMA. The most novel data handling

function of SIGMA is its ability to parse a soil description and store this detailed

information in the GeoTec database. The necessity for a parser as a component of

SIGMA is discussed followed by a detailed examination of the design methodology

and implementation of the parser. Its linkage to the GeoTec database, structure,

object oriented functionality and rules lead onto a discussion of the operation of the

parser illustrated with examples. SIGMA also contains interfaces to the GeoTec

database and these are considered in the subsequent section along with the ability to

import data in a standard format directly into the database. SIGMA also incorporates

data checking routines which allow the user to verify data in the database and this is

covered in the final section.

Chapter 8 covers the data analysis facilities of SIGMA. A detailed consideration is

given to the parameter assessment module of SIGMA which allows the user to

selectively examine data in the database and assess design parameters, either directly

or via correlation routines. The borehole interpolation module is then discussed, from

its object oriented approach through to an illustration of a session with the system.

The borehole interpolation module is an implementation of earlier work at Durham



and as such the chapter covers its essential differences in approach to the original

PROLOG system.

Finally a discussion of the system and those matters raised in earlier chapters is

covered in Chapter 9. This covers the implementation of information systems to the

geotechnical industry and their advantages. A review of the PROKAPPA software

performance over the period of the project is also included. This is followed by

suggestions for further work and final conclusions

6



Chapter 2

Knowledge Based Systems and Databases

2.1 Introduction

Knowledge based systems (KBS), are becoming an increasingly common component

of the field of information technology. This chapter discusses attitudes to KBS, and

compares them with the acceptance of computers in general. An outline of the

fundamental structure of KBS's is given, along with a review of the main

methodologies in use.

Throughout this thesis, and especially this chapter, the terms 'expert system' and

'knowledge based system' will be used interchangeably. Whilst there is a body of

thought on the difference between these terms, (e.g. Mullarlcy, 1986) they are both

used here to represent systems that incorporate the domain specific knowledge of

experienced personnel in the field, or from published literature.

This chapter also introduces the concept of databases, their general structure and

advantages over other data storage systems, followed by a discussion of the various

data models utilised in their design. An overview of the historical evolution of

database software is given, outlining their progress from basic punch-card file based

systems through to the current Relational Database Management Systems, RDBMS.

The combination of database and knowledge based system technology has led to the

new field of Knowledge Based Management Systems which is briefly introduced.

7



The chapter is concluded with a discussion of the human-computer interface, as the

importance of this interface can have a great impact on the acceptance of the

technology. The principles of good interface design along with the differing tools

available to the designer are discussed with reference to the design process for the
•

SIGMA interface.

2.2 Knowledge Based Systems: An overview

Before a discussion of Knowledge Based Systems (KBS), a brief observation on their

acceptance within the field of information technology as a whole is useful. Since the

first computing devices were introduced to society, there have always been those

people who would wish to be over enthusiastic about their potential, as there are also

those who would decry them as dangerous machines. Both of these reactions, whilst

understandable, are equally unhelpful; the former building up hopes and expectations

to a false degree and the later giving rise to a reluctance to adopt a useful technology.

As with most technological advances, the reality of progress falls somewhere between

the two extremes. However a comparison of the language used to describe both early

computers and KBS is interesting.

In 1946 Lord Mountbatten, speaking as President of the Institution of Electrical

Engineers, stated (CSS, 1989):

now that the memory machine and the electronic brain were upon us, it

seemed that we were really facing a new revolution ..."

Talk such as this engendered an aura of mysticism and perhaps even fear and distrust

around the new technology. What in fact had been developed was a technology that

could carry out mathematical tasks on a scale hitherto unimagined, enabling complex

8



numeric tasks to be completed quickly and efficiently. There were some people who

decried computers on the grounds that they would eventually subsume their human

operators, that there would be robot slaves and the like. This imaginative talk,

understandable in the dawning of a new technological era, looks stale in the light of

what has actually occurred to date. There are no robots, no computers, capable of

matching the performance of the human brain.

Compare Lord Mountbatten's comment with this claim made in an Al company

brochure in the late 1980's:

" 'Expert Systems', sometimes known as Knowledge Based Systems', are

capable of working like experienced and skilled staff ..."

Again, comments such as this leads to the assumption that the systems are capable of

achieving tasks far exceeding their actual potential. This overstating of the abilities of

KBS has engendered scepticism which may lead to public mistrust. Whitby (1988)

proposed a code of conduct for those people working in the field of Artificial

Intelligence, AI, one of the main recommendations being:

All professional persons working in the field of All should take all

possible steps to ensure that their customers, other professions and the

public are not misled to the degree of intelligence or competence

possessed by AT systems. Descriptions and labels suggesting human

attributes should be avoided where there is no technical justification

for their use. Computer based labels such as 'data', 'computation',

'processing' and so on should be used in preference to human-based

labels, such as 'expert', 'inference', knowledge' and 'intelligence'.

9



Whilst some of these terms have become a seemingly integral part of the language of

KBS (sic), the main thrust of this missive is clear and, in the author's view a sensible

course of action. It is hoped, that like computers, as the use of KB S becomes more

widespread and their usefulness in helping people arrive at better informed decisions

is seen, they will increasingly become an accepted part of information technology.

2.3 Fundamentals of a Knowledge Based System

2.3.1 Definition of a Knowledge Based System

KB S technology forms an area of research within Artificial Intelligence (AI), a branch

of computer science concerned with simulating human intelligence in a computing

machine. The term Knowledge Based Systems can be defined in many ways (Adeli,

1988; Maher and Allen, 1987), some of these descriptions are complex, some simple.

Some seemingly do not distinguish between KBS technology and conventional

programming techniques. A broad statement of definition for knowledge based

systems is given by Gaschnig, 1982:

"Knowledge based expert systems are interactive computer programs

incorperating judgement, experience, rules of thumb, intuition and

other expertise to provide knowledgeable advice about a variety of

tasks".

One of the more meaningful ways to define KBS technology is to highlight where it

differs from conventional programming, as shown in Table 2.1:

10



'CBS Conventional Programming

Symbolic processing Numeric processing
Separated knowledge from control Combination of knowledge and control
Ability to reason heuristically Algorithmic processing

Table 2.1 - Comparison between conventional and ICBS programming

Looking at each of these differences separately, a clearer definition of KBS can be

obtained.

2.3.1.1 Symbolic Processing

KBS may utilise symbolic processing, whereby a symbol represents data, concepts or

behaviour. The ability to process these symbols in a domain specific manner gives

the KBS its flexibility. It allows the system developer to model complex structures to

assist in the solving of a particular problem without having to operate within

restrictive guidelines.

Conventional programming techniques operate in an environment where the structure

of data is predetermined and essentially numerical. There are exceptions to this, for

example C++ (Borland, 1993), but these exceptions can be seen as an illustration of

the coalescence of computing methodologies.

2.3.1.2 Knowledge Separation

In conventional programming techniques there is very little separation between the

data contained in the system and the control of the program itself. The two are

dependent upon one another for the overall operation of the system. In KBS, the

knowledge is distinctly separate from the control mechanisms, or inference engine.

The knowledge, or data, can be stored in a structured format, for example knowledge

bases or rulesets, and separate inference mechanisms operate on this data to produce

results. Both the knowledge bases and the inference mechanism may be modified

independently of each other.

11



2.3.1.3 Heuristic Reasoning

In conventional programming, data is generally provided and processed in an

algorithmic manner. Repetitive or iterative processes are carried out on data of the

correct form and type. KBS have the ability, as well as carrying out algorithmic

processing, to operate on uncertain data or ranges of data. Data can be provided in

many forms to the system which will attempt to deduce as much as it can from this

input data, using the knowledge contained in the knowledge bases and the inference

mechanisms provided.

This is not a rigorous definition, a knowledge based system might not adhere to all

these principles but will, in the main, show these characteristics.

2.3.2 Main Components of a Knowledge Based System

In general, most KBS can be considered to consist of three main components:

Knowledge base

The component of a KBS that contains all the information associated with the domain

to which the system is applied. This information may be documented definitions,

facts, rules and heuristics. Knowledge bases may be organised hierarchically as

knowledge trees or as sets of rules (rulebases) The knowledge should be able to be

viewed and manipulated independently.

Context  (also known as working memory or fact base)

The component of a KBS that contains all the information about the problem currently

being solved. Its content changes dynamically and includes information that defines

the parameters of the specific problem and information derived by the system at any

stage of the solution process.
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Inference mechanism

The component of a KBS that controls the reasoning process of the system. The

inference mechanism uses the knowledge base to modify and expand the context in

order to solve a specific problem.

In addition, a user interface is essential in allowing users to operate the system in a

simple and easily followed manner using whatever control items and methodologies

are required (section 2.9). In commercial systems it is not unusual for the

development of the user interface to take up to 70% of the total development effort

(Sutcliffe, 1988). A knowledge acquisition module may be considered to be a part

of the user interface, allowing the users and/or system developers to enhance the

scope and breadth of the knowledge bases within the system.

2.3.2.1 Blackboard Model Architecture

A variation of the basic architecture described above is the blackboard model. This

complex structure is based upon several independent knowledge sources, which can

be viewed as knowledge bases, and the use of a hypothetical blackboard (Bundy,

1990). A good analogy of the methodology is several experts sitting around a

blackboard, each contributing their own ideas and thoughts, and a chairman who

organises their thoughts and attempts to produce correct hypotheses for a solution. In

practise, a Monitor controls the flow of the hypotheses through the context, managing

the contributions from the knowledge sources and attempting to produce a correct

solution. These systems work on levels of hypothesis and are in general complex to

design, lengthy in operation whilst producing meaningful and fully explained

solutions.
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2.3.3 Knowledge Representation

Within the framework of a typical KB S there are several methodologies of knowledge

representation which may be applied (Mullarkey, 1987). These methodologies

include:

2.3.3.1 Rule based

Rule-based representation schemes utilise a set of rules to store the domain

knowledge, sometimes known as production rules. These rules take the form of IF

(situation, condition, pattern) THEN action and the manner in which these rules are

executed, or fired, is driven by the inference mechanism. The IF clause, or

precondition, is matched against a series of facts held in the context of the system, and

those rules that apply are fired, producing a new set of facts. These new facts can then

be matched against other rule preconditions to achieve the solution to the domain

problem. Rule based systems can be stand alone or a subset of a larger system.

2.3.3.2 Frame based

The term frame covers a variety of knowledge representation schemes, for example

network or object, but generally the underlying concept is the same. These systems

employ a representation of the knowledge of the problem concerned, either utilising

slots on objects/frames, or nodes and their interconnections in a network. Alteration

of data in certain slots may give cause to action in others, or independent modules,

and knowledge may be inherited 'down' from frames precedent in the network.

2.3.3.3 Logic Based / Predictive Calculus

In logic-based systems knowledge is represented as assertions in logic. Logic based

languages allow quantified statements and other well defined formulas as assertions.

The flexibility of mathematical logic make these knowledge representation systems

powerful, like Prolog (Marcellus 1989; Konigsberger and De Bruyn, 1990; Moula,

1993), however the difficulty in handling uncertainty make them unsuitable for some

applications
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2.3.4 Inference Mechanisms

The inference mechanism of a KBS is the engine of the system, the process by which

the problem is attempted to be solved. The two main inference mechanisms are

forward chaining and backward chaining, sometimes known as data driven or goal

driven respectively. Forward chaining assumes an initial state of known facts, and

progresses though the problem, utilising the knowledge in the system to a goal, or

conclusion, state. Backward chaining assumes a goal state or hypothesis and reasons

back utilising data or facts to support or discount the assumed hypothesis. Mixed

chaining, can also be used as a valid problem solving technique and employs a

mixture of both forward and backward chaining (hybrid approach).

2.3.5 Uncertainty within Knowledge Based Systems

KBS may also be required to deal with uncertainty in data and inference. Adeli

(1988) has discussed various methods that have been employed to deal with uncertain

or incomplete information in the knowledge base. The manipulation of uncertain and

imprecise knowledge requires appropriate models of inference (Mullarkey, 1987;

Benchimol et al, 1987).

Uncertainty in itself is a very uncertain area and prone to the subjectivity of the

individual or group of individuals whom are assigning that uncertainty (Miles and

Moore, 1994). To be able to assign a specific certainty to an event or set of facts, the

person must be in full possession of all the facts that can affect that event. In addition,

there must be no bias to any one characteristic of the problem, which in itself presents

a very difficult property to measure. Gaining knowledge from experts or reference

material is relatively a simple task when compared to assigning a certainty rating for

that particular piece of knowledge.
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The inclusion of uncertainty within a KBS should be decided upon at the earliest stage

possible in order to construct the most suitable methodology for dealing with it. The

exclusion of uncertainty by no means devalues the system and, depending on the

domain, may even increase the systems practicability.

2.4 Software Tools for Developing a KBS

The tools which are available for developing a KBS can be divided into three main

categories: a) General Purpose Programming Language (GPPL), b) General Purpose

Representational Languages (GPRL) and c) Expert System Shells as described by

Mullarkey, 1987. Expert System Development Environments might be added to the

upper range of this spectrum, or as an addition to Expert System Shells.

The first category, General Purpose Programming Language (GPPL), includes the

conventional procedural languages such as FORTRAN, C, Pascal etc. A number of

KBSs have been developed in procedural languages since they offer easy portability

among different types of computers and compatibility with numerous -pieces

software available in these languages (Adeli, 1987). However, as these languages are

mainly oriented towards numerical algorithmic computation they do not provide the

most appropriate environment for the development of KBS. The production of non-

deterministic systems is only achieved with difficulty, however procedural languages

are suitable for producing rule-based systems. Noticeably, some of the more

successful development environments are actually written in C.

In the second category, General Purpose Representational Languages (GPRL), symbol

manipulation languages are included that have been developed for use in building

KBS. These languages are symbolic, that is information is presented in a descriptive
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form rather than strictly numerical. The most popular Al programming languages are

LISP (LISt Processing) and PROLOG (PROgramming in LOGic).

LISP is the most widely-used language among Al researchers in the United States and

was one of the first languages to be directed toward symbolic representation and list

processing (Adeli, 1988). PROLOG is a symbolic programming language based on

predicate logic. It allows information to be specified in a declarative style and

includes a backward-chaining inference mechanism.

Another class of programming languages, the object-oriented languages, have recently

been the subject of very active research work in Al (Benchimol, 1987; Adeli, 1988).

An object-oriented language is a language which in principle handles only

autonomous entities of a single type called objects. Each object is defined by data

specific to it (its characteristics) as well as operations and computations that it is

capable of executing when a message is sent to it. Objects are capable of inheritance,

which can lead to models of a domain problem being programatically created.

Expert System Shells, which form the third category of tools, are software packages

recently developed in order to aid in the rapid prototyping of application KBSs. They

consist of two of the three main components of an expert system, i.e. an inference

engine and a user interface. They usually provide one or more knowledge

representation forms and inference mechanisms. Expert system shells provide greater

ease of use than a straightforward Al programming language, but the overhead for this

ease of use is less flexibility. Adeli (1988) and Benchimol et al (1987) describe some

of the more popular expert system shells.

Expert System Development Environments can be viewed either as a separate level of

tools, (Mullarkey, 1987), or as an extension of the Expert System Shell. They contain

all the main components required to produce a KBS, within an environment which
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also has software tools, editors, debuggers, workbenches and the like. Importantly,

they usually provide a variety of knowledge representation forms and inference

mechanisms, moving away from the traditional view of, for example, either a rule

based system or a frame based system. This gives the development environments a

flexibility unachievable with an AT programming language but that flexibility is

constrained by the software environment. The developer may only develop systems

that the environment is capable of producing, whilst using an AT language, greater

variation within a more limited scope may be applied. Allwood et al (1987) draw

attention to some experiences gained from evaluating a number of commercially

available expert system shells and development environments.

Detailed analysis of the fundamental characteristics of KBSs, the available techniques

for their development as well as their capabilities and potential applications are

presented in the published literature (Maher, 1987; Adeli, 1988; Benchimol et al,

1987).

2.5 Databases

2.5.1 What are databases?

The word database can be used to refer to any large pool of data collected together at

one location. Specifically, a database must be organised so that it can serve the data

requirements of different applications, setting a standard data format. The term

database relates to the physically stored data and the software required to allow that

data to be stored (Bamford and Curran, 1987). A database can also be defined as a

computer-based record keeping system i.e. a system whose overall purpose is to

record and maintain information. The information contained can be anything that is

deemed to be of significance to the organisation and/or application that the system is

designed to serve, (Chahine and Janson, 1987). The Database Management System,
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DBMS, provides the user with an interface to the physical data stored in the database

and those routines to ensure data integrity and manipulation.

The history of database software dates back to the early 1960's when the first database

systems were developed by individual companies to solve their particular problems.

In the mid 1960's the first general purpose packages became available. Perhaps the

most famous of such packages was developed by the General Electric Company

(GEC) called the integrated data store (IDS), originally designed to run specifically on

GEC machines. B.F.Goodrich saw the work that was being done at GEC and decided

to implement IDS on the new IBM system 360 range of computers. John Cullinane

entered into a marketing agreement with Goodrich to produce the Cullinet IDMS

DBMS, the dominant force in database technology on IBM mainframe machines up to

the 1980's

In 1969 a technical group operating under the auspices of CODASYL (Conference on

Data Systems Language) produced the specification of a common database facilities

which was strongly influenced by IDS and IDMS. The CODASYL model has been

enhanced over the years to standardise the facilities of a range of DBMSs.

In 1970 an IBM scientist, Dr E.F. Codd, published an influential paper on database

architecture (Codd 1970). Researchers at IBM used the material in Codd's early

publications to build the first prototype relational DBMS called system/R. This was

emulated at a number of academic institutions, perhaps the foremost example being

the INGRES research team at the University of Berkeley, California (Stonebraker,

1986). During the 1970s and early 1980s relational databases got their primary

support from academic establishments. The commercial arena was still dominated by

IDMS-type databases. In 1983, IBM armounced its first relational database for large

mainframes - DB2. Since that time, relational databases have grown from strength to

strength.
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An analogy frequently used to aid in the definition of a database is that of a

conventional office filing system, where documents are stored in folders of a specific

drawer of a filing cabinet. When a particular document is required to be extracted, a

separate external indexing system is consulted to identify the location of the

document, i.e. a Roladex or equivalent, and then the document can be extracted

directly. If documents covering a range of data groups i.e. a set of companies, is

required, this grouping must be carried out manually, indexes consulted and then the

individual documents extracted until the group criteria is satisfied. Once the filing

cabinet is filled, the oldest documents are placed in an archive, leading to longer

access times to extract data if it is required at a later date.

In database systems, data can be stored in a formatted and easily accessible manner,

the indexing is carried out by the system itself and most database systems can handle

group selection. Large quantities of data can be stored and accessed, and if archiving

is required the use of external backup media, such as magnetic tapes, floppy and

Winchester disks, enable ease of access.

This simple analogy is often used to outline the function of a database, but it also

serves to highlight the benefit of utilising information technology to store data, rather

than using paper-based systems. The most important of these advantages are:

Fast data access.

Modern information technology allows thousands of data records to be grouped,

sorted and displayed in a matter of seconds. The performance of high level database

systems are not significantly affected by the quantity of data being processed. This

ability is one of the mainstays of information systems, whereby the scope of the

processing/analysis of data increases exponentially as the transition from paper-based

to silicon based technology is implemented.
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Improved data storage.

Paper can wear out and become unreadable and be easily damaged by fire or flood.

Unless duplicates are taken, the actual piece of paper represents the one and only copy

of whatever it contains. Also paper-based systems are handling dependent, that is the

more they are accessed the more they wear out. With electronic data storage the

availability of backup systems and the application of a thorough backup policy, the

safety of the data should always be ensured. Electronic data storage media such as

silicon disks and tape streamers have much greater longevity than their equivalent

paper-based systems.

Electronic data transfer.

The use of electronic data storage allows data to be transferred to similar systems

much faster than the corresponding paper based systems. With the advent of high

speed telephone lines, satellites and fibre-optic cables, data can be transferred around

the world in a matter of seconds. The continuity of data this offers, as stated in

Chapter 5, presents real advantages for data management.

2.6 The Structure of a Database

The essential basic element of the database is the record. A record consists of a

number of fields, or columns, that are related together and describe the same object.

If a database is considered to be a table where all the information is stored, each

record corresponds to a row of this table (tuple). Each record should be unique, so

that when any manipulation operation is performed on the data, the exact record is

accessed. This uniqueness is obtained by providing a key field or combination of

fields, that will uniquely identity each record. The key fields have the property that,

knowing their value, one can identify the values taken by other fields of the same

record.
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The main advantage of using a database is that it provides centralised control of its

operational data. By providing such control of the data, several other advantages are

obtained (Date, 1983).

1) Redundancy can be reduced.

In non database systems, each application has its own private files. This can often

lead to considerable redundancy in stored data. When similar data resides in several

different files, the updating procedure can become clumsy and processor inefficient.

This inefficient processing counteracts one of the technology's main advantages over

other systems, namely high speed processing.

2) Inconsistency can be avoided.

If a unique identifier is assigned to each record, no duplication of records will be

allowed. This will eliminate the risk of having two inconsistent records for the same

object. This occurs when, due to duplication, data in some file systems are not

updated, leading to different values for the same data item.

3) The data can be shared.

Different databases and applications can share the stored data without having to

duplicate this information for each object.

4) The data can be standardised.

By building a database, the information stored and its format can be standardised.

This is particularly desirable in cases where data is being interchanged between

different systems and where it is necessary to have the information stored in a valid

and complete form.

22



2.7 Data Models

All of the database systems currently available are based on one of three recognised

data models. These are the hierarchical, the network and the relational models

(Benyon-Davies, 1991). The hierarchical model is a direct extension of commonly

used file processing methods. Basically, data is organised hierarchically in

relationships of ownership and stored in files. A single database can be made up of

several separate files, each file concerned with a separate data group. This

methodology, whilst still in use, has been superseded by the two later data models,

mainly due to data redundancy. This redundancy is inherent within the hierarchical

model, as data separation occurs at a fundamental stage in the design of the database

and therefore the storage of similar data produces unnecessary duplication.

The network (CODASYL) model extends the hierarchical model, by introducing the

concept of a network. Each entity or record within the system is joined to other

relevant entities by a system of pointers. Like the hierarchical model, the data can be

contained in sets of files, or directly onto a memory device such as a magnetic tape or

disk, or the writable portion of computer memory. Whilst this model is far more

efficient than the hierarchical model and reduces markedly the data duplication, it

suffers from over complication. Complex and rational data structures can be defined

and data integrity ensured but at a cost of a great deal of programming effort, leading

to the situation where a great deal of experience is required to navigate one's way

through the database.

Finally, the relational model organises data into one uniform representation.

Everything in a relational database is represented in the form of two-dimensional

tables related together by common attributes. This simple yet flexible orthogonal

nature of the relational model allows for complex and efficient structures to be

defined, whilst allowing simple design tools to aid the systems designer. The
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relational model has become the most frequently used data model since its

introduction in the 1980's, surpassing both the hierarchical and network models.

A Relational Database Management System, RMDBS can be considered a pool of

shared resources that can be used to access and maintain a relational database. The

RDBMS acts as an interface between the end-users, application programmes and the

database itself, allocating storage, providing security and handling all the demands of

traditional file-based processing.

These three data models are the basis for the majority of all database packages

currently available. Some custom written systems are available that do not strictly

adhere to any of the models, but these have tended to arise from a specific application

and then been commercialised as an afterthought. A great deal of research is looking

into object oriented databases, OODB's, whereby the DBMS actually resides within,

and is part of, an object oriented environment. Some applications, for example

Computer Aided Design (CAD) and hypermedia systems, require a flexibility that the

fixed relational model is unable to supply (Ishikawa et al, 1991). OODB's seem to

provide a solution to this flexibility but as yet the technology is still undergoing

development (Kim, 1990).

With the growth in the use in Personal Computers (PCs), many database packages

have been created specifically to operate on this platform. Some of these, DBase or

Clipper for example, have progressed to become a standard for PC database systems

and have been implemented on other platforms, e.g. UNIX, VAX. These systems

utilise a ASCII file as the database, comprising a header, the data itself and an end of

file marker. The header contains the information which informs the database software

how many fields of data there are in a row, a simple format specifier and/or its

location. A separate index file is associated with each database allowing fast data
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retrieval and key fields can be defined within the database on which sorting may be

carried out.

Several database files may be linked together to form a relational type data structure,

key fields being used to link the structure together. These PC systems offer a great

deal of flexibility, as the data structures need not conform to any one format.

Moreover the performance of the more recent additions to the market, FoxPro for

example, is comparable with workstation based systems.

However, this traditional file based approach can result in serious limitations in the

final software. The most important of these is uncontrolled redundancy, as previously

mentioned in section 2.6.1. In addition, when large quantities of data are being

manipulated, the limitations of file based systems become apparent, that is the

processing speed is dependent upon data volume. PC based database systems, whilst

having flexibility, do not have the multi-user and security capabilities offered by the

more sophisticated workstation or mainframe based database products. The ability to

have several users interrogating a database consisting of 30 plus tables is simply not

achievable with many PC based systems.

The maintaining of industry wide standards is not assisted by the flexibility offered by

these file based systems. The decentralisation of both systems design and operation

may lead to the different names and formats being used for the same data item,

making the sharing of data impractical. As standardisation and centralisation becomes

the aim of many information based systems, this flexibility may be seen as detracting

from file based systems versatility. Sophisticated RDBMS's, perhaps in conjunction

with PC based sub-systems, provide the stable environment for the application of

industry wide standards and efficient data management.
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2.8 Databases and Knowledge Based Systems

As the design and implementation of Knowledge Based Systems (KBS) continues, the

introduction and gradual integration of databases into the field has added to the

technology as a whole. The utilisation of databases to store, and in some form

process, knowledge is of increasing use and has led to a new area of research, namely

Knowledge Based Management Systems, ICBMS.

Before a discussion of ICBMS technologies it is useful to look at the various methods

for linking together a database with a KBS or expert system, (Al-Zobaide and

Grimson, 1984; Jarke and Vassiliou, 1984). These can be broken down into the

following:

1) An enhanced database system.

2) An enhanced ICBS.

3) An interdependent KBS and database.

4) A higher order synthesis. Direct ICBMS.

The first two types are examples of an evolutionary approach to the integrating of

database and KBS. This approach treats databases and/or KBS as starting points and

moves in an evolutionary fashion towards the goal of a KBMS. However, there is a

strong argument in employing the known strengths of each tool and allowing them to

communicate down a common data channel to solve the sort of "intelligent" tasks

required by the application, that is interdependent expert and database systems. The

final choice, that of a higher order synthesis of the two technologies, is the most

revolutionary approach to the problem. As yet, no systems of this nature exist,

although the theory has been defined.
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2.8.1 Enhanced Database Systems

By definition this method uses an existing DBMS and is complemented by the

addition of a deductive component. This addition can be carried out in three different

ways, namely:

a) Embedding. Deductive routines are embedded within the DBMS itself,

and act as another facility, or command, of the DBMS (see figure 2.1a).

b) Filtering. User and application program queries are directed through a

deductive component before being processed by the DBMS. In this way, the

deductive component acts as an interface between the user/application programme and

the DBMS (see figure 2.1b).

c) Interaction. The DBMS interacts with the deductive component rather

than the user or application programme (see figure 2.1c).

Figure 2.1 - Enhanced database system: a) embedding, b) filtering and c)
interaction
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This approach relies heavily on direct access to the commands and protocols of the

DBMS, as well as a reliance on programmers and developers with experience in the

field. For these reasons this methodology is used by database led projects with a

requirement for only a specific type of deductive component, for example integrity

constraints within real time systems and mechanisms for handling incomplete data

within the DBMS environment.

2.8.2 Enhanced ICBS

The extension of an KB S to incorporate database facilities can be achieved with either

internal or external enhancement (Jarke and Vassiliou, 1984). With internal

enhancement, the programming language in which the KBS is written is extended to

allow database facilities, in effect giving the KBS its own DBMS (see figure 2.2).

With systems written in such languages as PROLOG this is achievable and preferable

(Walker, 1984). However for larger shells or development environments the

computational effort required to produce a DBMS subset is prohibitive.

Figure 2.2 - Enhanced KBS: internal enhancement

External enhancement requires the inference engine of the KBS to be provided with

direct access to a general purpose, external DBMS. There are two approaches to how

this access is gained, namely:
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1) Loose coupling. In loose coupling, there is no dynamic link between the

database and the KBS (see figure 2.3 ). The data is delivered to the KBS as a

snapshot prior to execution of the system and when this data has been processed, new

data may be requested from the DBMS (Missikoff and Wiederhold, 1986). This

methodology works efficiently in those situations where batch data retrieval is

appropriate. However, due to the distinct separation of the deductive and data

retrieval phases, the system has no method in which to store data dynamically.

Secondary mechanisms have to be set up to allow memory paging. In addition, if the

database that is being used is updated whilst the KBS is in operation, inconsistencies

may occur.

2) Tight coupling. In tight coupling, data is retrieved from the database as

and when required during the execution of the KBS (see figure 2.3). The DBMS

therefore acts as a slave to the KBS. This overcomes many of the problems associated

with loose coupling, but only at a cost of impaired performance due to the system

overhead required to maintain a dynamic link to the database (Benynon-Davies,

1991). However, in a development environment, this cost can be seen to be

justifiable.

Figure 2.3 - Enhanced 1CBS: external enhancement a) loose coupling and b) tight
coupling
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2.8.3 Interdependent ICBS and Databases

Allowing both the database and the KBS to stand independently whilst

communicating through a common data channel allows both systems to be used as

stand alone units or in conjunction with one another (see figure 2.4) . This approach

is most suitable where existing systems are required to be enhanced by addition of

another. The major problem with this interdependency revolves around the decision

as to where the overall control of the system interaction and processing resides. If the

control is distributed between the two systems, with interaction via message passing,

there is an inevitable problem of data integrity and redundancy.

A more suitable solution is to have distributed processing but with control residing in

an independent subsystem, managing the interaction between the database and the

KBS (see figure 2.4). This more stable solution is better suited to real-time

applications whereby both systems may be interacting at several levels

simultaneously, however with a considerable economic and resource overhead.

a b routines

User

User

DBMS 4-11. Expert
System

DBMS
Expert
System

= control routines = control

Figure 2.4 - Interdependent KBS and database: a) distributed processing and
control and b) independent subsystem

2.8.4 Knowledge Based Management Systems

The approaches described above are all evolutionary approaches to the problem of

building a system to manage knowledge, that is the bringing together of database and

KBS. There is a body of thought that have suggested that a true knowledge based

management system is unlikely to come form the wedding of existing technologies.
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They maintain that a search for a higher order synthesis is required. In other words,

that an approach is required that embraces under one umbrella the facilities of both

KBS and database systems.

A number of initial proposals have been made in this area, for example semantic data

modelling (Mylopoulos,1989), object-oriented databases (Navathe, 1989; Ullman,

1989) and first order logic (Galliere and Minkler, 1978). In particular, the

combination of logic with database technology, the formation of deductive database

systems, is an area of continued interest. The work carried out by Clocksin and

Mellish (1981), Walker (1984) and Kowalski (1985), in showing that the use of such

languages as PROLOG can be applicable in the formation of logic based database

systems, has been a significant contribution to the field.

The KBMS approach may be the most appropriate and thorough manner for the

synthesis of technologies to appear, but its further application and theories are beyond

the scope of this thesis.

2.9 The importance of Interface Design to Knowledge Based Systems

In designing practical KBS that can be used in geotechnical engineering it is

important to plan the way in which the system will interact with the end user.

Interface design has been an issue in the information technology field and associated

industry since the early 1970's, (Martin, 1973) and its importance to the acceptance of

new technology has long been recognised. People have realised and complained for a

long time that computer systems are difficult to use, obtuse and jargon-riddled. By

and large, users had to put up with this state of affairs because computer programmers

took no notice of their complaints. The rise of human-computer interaction, or

interface, as an active discipline correlates well with the rise of the microcomputer
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and of late the Personal Computer (PC), possibly due to the availability of computers

and their software to the population at large. As systems have become more

information intensive the core nature of systems has moved away from being a super

powerful calculator and towards that of an efficient information processor and the

importance of the interface has increased.

Computing systems are becoming increasingly interactive. As they do, the amount of

code required to manage the input and output, that is the interface, has risen to

accommodate this transfer of human/machine data. Knowledge based systems are

very information intensive and as such it is very important not only to get the interface

right but also to ensure its efficiency. It is estimated that most commercial decision

support and information systems have between 70 and 80 per cent of their code

devoted to interface handling (Sutcliffe, 1988).

If poor interfaces are used the consequences can be far ranging, from simple errors to

system rejection. Increased mistakes in data entry and system operation are expensive

both in the time lost in correcting them and in errors that go uncorrected. Incorrect

data residing in databases and knowledge bases can have a compounded error effect,

see Section 2.6. Badly designed interfaces can also to lead to user frustration,

manifesting itself in low productivity or under utilisation of the system, as the users

tend to avoid usage due to the unfriendliness of the task. This may also be a cause of

additional data errors being introduced to the system

If the interface is over designed then the performance of the overall system will

decline. Machine resources will be devoted in the main to interfacing rather than the

software's main task. This is both inefficient and ineffective. In the extreme case,

users will simply not use a system, either utilising replacements or organising tasks so

as to avoid the system. It would be unfair to attribute this to purely bad interface

design, poor system requirements analysis or machine quality could also be to blame.
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2.9.1 Principles for user interface design

In order to fully understand the requirements of a good interface, much research work

has been carried out in the field of user psychology (Card et al, 1983: Christie et al,

1987; Lindsay and Norman 1977; Sukaviriya 1993). This has given an insight into

how the human acts during interaction, areas that should be avoided and areas that

should be encouraged. These have been subdivided into several principles that should

be adhered to in the design of the interface, although rigorous enforcement is not

necessary or possible, they are merely guidelines.

Consistency - similarity of patterns and in presentation of information. Consistency

reduces human learning load and increases recognition by presenting familiar

patterns. The human mind is excellent at pattern matching.

Compatibility - New designs should be compatible with, and therefore based upon,

the users previous experience. Obviously with the introduction of a new technology

to an area such as geotechnical engineering this may not always be possible.

Economy - Interface designs should reduce the number of operations required by the

user to a minimum and lessen the work of the user whenever possible.

Adaptability - Interfaces should be able to adapt to different levels of user, from

speed of operation through to the skill level of particular users. When this is not

possible the interface should be clear and concise, not laborious for the experienced

user yet clear for the novice.

Guidance not control - Interfaces should guide the user through a set of tasks and

inform and instruct in the process. The interface should function at the users' pace

according to the users' command and should not attempt to control the user.
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Structure - Interfaces should be designed to reduce the complexity of a given

framework. Information should be presented and organised so that only relevant

information is passed to the user in a simple manner.

The first three of these principles - consistency, compatibility and economy - can be

grouped together as a measure of the efficiency of the interface, that is how easy is an

interface to learn and use. The more approachable and friendly the interface the

quicker will be its acceptance and thereby the acceptance of the technology. The later

two - structure and guidance and control - are important in gauging the correct

approach of the interface. Throughout the design of the interface for SIGMA it is

these two groups of principles that have been used as guidelines.

Type Advantages Disadvantages
Question	 and
Answer

Easy to use
Easy to learn
Easy to program

Unsophisticated
Slow

Menus Easy to use
Easy to learn
Easy to program

Limited choice per menu
Can be slow

Icons Very easy to learn
Language independent
Easy to use

Requires graphical hardware
Requires specialist software
Uneconomic on system resources

Form Filling Quick and easy to use
Easy to learn

Unsophisticated
Mainly	 suitable	 for	 data
processing

Command Language Quick to use
Sophisticated
Extensible

Difficult to learn
Difficult to program
Requires a level of expertise

Natural Language
(includes voice)

No learning required
Natural
communication

Difficult to program
Requires knowledge base
Verbose input
Can be ambiguous

Table 2.2 - Types of Interface Available

Whilst operating within these guidelines there are still a wide range of choices to be

made in the type of interface that is to be employed, these are summarised in Table

2.2 (Sutcliffe 1988).
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The vast majority of interfaces utilise several of these types, thereby gaining their

cumulative advantage. As the ingress of windows based software into the PC and

workstation market has increased, so their acceptance and usefulness has grown

accordingly. This acceptance in itself helps to fill the principle of consistency, with

the familiarity encouraging use and helping to reduce a fear of the system.

Much use should be made of feedback in the interface; if there is a delay whilst

processing the user should be informed. Where applicable and possible Help

information should be available to the user and in the case of an error, messages

should be given to the user advising on any action to be taken.

There is no doubt that the acceptability of any computing system, and especially in

areas of new technology, that the look and feel of the interface to the user has a strong

impact on its acceptance (Easdon, 1981). The use of prototype systems to

demonstrate at an early stage how the system will look is a very useful device. The

important feedback these demonstrations can provide can give a direction to the

overall design of the interface, with many changes being implemented as a result of

the demonstrations and ensuing discussions.

2.10 Conclusions

As KBS become more widespread throughout the field of information technology

they are coming to be seen as a useful addition to the range of tools available to the

engineer. Their ability to process symbolically as well as numerically increases their

versatility and their ability to store knowledge in a structured format allows for easy

access. Important to the acceptability of such systems is the design of interface which

are consistent with the environment in which they are to be used.
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There are several facets to KBS technology, differing knowledge representation

schemes, inference mechanisms and overall methodologies and this again increases

their flexibility. Some procedural General Purpose Programming Languages (GPPLs)

have strict limitations to their overall domain. Whilst within their limitations they are

flexible. However, if methodologies are attempted that surpass these limitations,

processing problems can occur.

Databases offer a centralised data store that can act independently or in conjunction

with other systems. The more data is present within a system, the more advantages

can be gained from the introduction of data structures through the medium of

databases. The relational data model has been shown to be the most suitable for

modelling real world systems, producing a clear orthogonal structure.

The combination of both KBS and database technologies has lead to the new area of

Knowledge Based Management Systems (KBMS) which may lead to the bonding of

logic and database technology. This could provide a powerful environment for the

deductive analysis of data. 	 •
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Chapter 3

Geotechnical Applications of Knowledge Based Systems and
Databases

3.1 Introduction

As stated in the previous chapter, Knowledge Based Systems (KBS) are becoming an

increasingly common component of the field of information technology. Their

applicability within the field of geotechnical engineering is briefly discussed in this

chapter followed by a review of those KB S involved with site

investigation/characterisation.

A major component of SIGMA is GeoTec, a ground investigation database. Other

geotechnical databases are reviewed along with a discussion on the applicability and

implications of a national standards applied to both data storage and transfer.

3.2 Knowledge Based Systems in Site Investigation

Site investigation is the process by which geological, geotechnical and other relevant

information, which might affect the construction or performance of a civil engineering

or building project, is acquired (Clayton et al, 1982). Details of a site investigation

structure, aims and procedures can be found in the B55930 and Weltman and Head

(1983).

Geotechnical engineering is the area of civil engineering most recognised for the use

of expert knowledge, for not only is it concerned with calculation and numeric analysis

but also with ideas, concepts, judgement and the deployment of experience which
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cannot be represented numerically (Moula, 1993). This is neatly summarised by Peck

(quoted by Tomlinson, 1986) when he states:

"If the techniques of soil testing and the theories had not led to results in accord

with experience and field observations, they would not have been adopted for

practical, widespread use. Indeed, the procedures are valid and justified only to

the extent that they have been verified by experience."

Geotechnics has, therefore, been seen as an area of civil engineering most suitable to

the application of KBS technology. There are numerous development and prototype

systems and much literature has been published to review and quantify these

(Santamarina and Chameau, 1987; Adeli, 1987; Adams et al, 1989; Moula et al, 1994;

Ibrahim, 1994). Accordingly, this review is restricted to only those systems that are

directly within the scope of this work, that is site investigation and characterisation.

SITECHAR (Norkin, 1985; Rehak et al, 1985) is a proposed KBS component of a

geotechnical site characterisation workbench, the purpose of which is to 'provide

advice on data interpretation and on inferring depositional geometry and engineering

properties of subgrade materials. The other components of the workbench are

databases to store the site data, graphics to produce 'alternative stratigraphic images'

and network workstations to carry out the numerical and algorithmic processing.

The system's architecture is based in the blackboard model (Section 2.3.2.1) that

provides a general structure for a complex problem-solving technique. Individual

rule-based knowledge modules, or knowledge sources, are used for solving particular

parts of the problem, namely: identification of trends and geometry, soil matching by

description, assessment of geology and geomorphology and searching for Marker

Beds.
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The knowledge is divided into the following classes: the strategic and tactical

planning, the micro- and macro-level inferences and the inference scripts. The

strategic planning processes select the procedures used to characterise the site, pursue

several alternatives in parallel, monitor the progress and redirect the system's "focus

of attention". Tactical level processors work for and under the strategic level

processors, in order to prove hypotheses, fill the details of the characterisation, access

and filter data and drive the production of the graphical output.

Micro- and macro-level inferences represent different hierarchical levels of problem

abstraction, namely geometric trend recognition, matching soil descriptions, defining

proximity etc., and verifying hypotheses on site geomorphology, lithology, geology,

identifying marker beds, respectively. The inference scripts are used to represent the

steps in characterising different types of sites and performing various parts of the

overall process. These knowledge classes are not necessarily distinct, each class can

potentially operate at every level.

The overall control of the system is provided through a single co-ordinating

Knowledge Based supervisor, which may be operational over several processors

simultaneously. The inference engine, which supports both forward-chaining and

backward-chaining, controls the communication and interaction between the

blackboard and the knowledge modules. This proposed system provides a very clear

implementation of how geotechnical engineers carry out their work in the real world.

However, the level of computational complexity required to operate the system

combined with the depth and breadth of work required to assemble the independent

knowledge sources (particularly producing a structure to allow them to interact at a

meaningful level) may cause implementation problems.

39



CONE (Mullarkey, 1986) is a development prototype KBS for the interpretation of

raw Cone Penetrometer (CPT) data. The system takes the raw CPT data as input and

carries out a validity scan. A classification of the soil types, including profiling of the

layers and the inference of the shear strength of sands and clays, is then attempted by

the system. Soil type classification is based on the use of two soil classification

systems (Dutch and Douglas & Olsen classification systems) plus a third, which is a

fuzzy set representation of the raw data from the Douglas & Olsen classification

system (Mullarkey and Fenves, 1986). The shear strength of sands and clays is

estimated using both empirical and rational based methods.

Both linguistic data (soil classification) and numerical data (shear strength), along

with the incorporated uncertainties (vagueness and statistical variability respectively),

are represented as fuzzy sets with respect to the linguistic variable. The soil type for

example, is represented as a three element fuzzy §,et (sand, silt, clay) along with the

corresponding numerical values indicating the membership of each element in it. The

appropriateness of a soil classification system, the accuracy of the system in respect to

certain soil types (Belief), and the relative importance of the inferred information

(Weight) are expressed as linguistic variables, again through the implementation of

fuzzy sets. The Belief and Weight are used as fuzzy set modifiers incorporating the

uncertainty in a certain piece of information (soil type, or shear strength).

The system has been implemented using OPS5 rules and LISP functions. The system,

that is classified as a development prototype, has been validated using published cases

and proved to be fairly reliable (80% accuracy). However, these case studies were

very simple soil descriptions, for example no terms such as slightly or very were

allowed, and further development of a parser would be required to produce more

meaningful results. A typical run of CONE may take up to 1.5 hours on a lightly

loaded Dec-20, depending on the length of the CPT log.
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SOILCON (Siller, 1987) is a development prototype KBS for helping the engineer in

deciding the level of geotechnical investigation required for a specific project. The

system matches the requirements of a proposed structure with the level of information

known about a site and the amount of information required to reduce the risk involved

with the subsurface to an acceptable level. The system starts by querying the user for

preliminary project and site data. Based partly on the responses to the preliminary

questions, higher level questions are then posed to the user, until finally, and

depending on the existing available information, the appropriate level of site

investigation is recommended. The system contains information for 24 investigation

techniques, ranging from very preliminary, such as topographical maps, to more

sophisticated, such as the pressumeter. The complexity of the investigation proposed

from the system is in direct relation to the amount of site data available. The system

was developed using the M1 expert system shell. It provides a backward-chaining

control strategy interfacing with a production rule knowledge base. The major

shortcoming of the system is the inability in dealing with quantitative geometrical

descriptions. The size of the project can only be defined as small, medium, or large,

while the foundation geometry is given as shallow, or deep. Despite these limitations

the system provides a good example of rule based reasoning applied to the choice of a

site investigation.

A simple KBS for site investigation is presented by Alim and Munro (1987). It offers

guidance on soil identification based on visual and physical observations of soil

characteristics. Given the soil and loading conditions the system provides judgement

about the most likely foundation type and then identifies possible foundation

problems. Finally based on the above information the most suitable sampling and

drilling technique is recommended. The system incorporates a backward-chaining

inference engine interfacing with a production rule knowledge base, and handles

uncertainty and imprecise knowledge using fuzzy sets. This expert system was written

in micro-PROLOG using the PROLOG expert system shell APES. The complete
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system exists in six separate files, which are fully compatible with each other and can

be used both independently or by loading them all into memory at once. The system

suffers from a very simplistic approach to the problem, being limited to only utilising

basic textbook knowledge.

SITECLAS [Wong et al, 1989] is an expert system used for site classification

according to the Australian Standard AS2870.1. The system was designed to explore

two points:

1) The potential of SUCAM, an expert system shell. This shell, written in

TURBO PROLOG and running on an IBM Personal Computer (PC) or compatible,

can be used to create rule-based backward-chaining systems.

2) The potential of applying expert system technology to geotechnical

engineering.

The input required involves information about natural ground or fill, site location, site

history and type of footing (if available). The main components of the system consist

on a knowledge base, a fact base, an inference engine, a user interface, an explanation

facility and modules for different functions. The knowledge base stores the knowledge

about a subject in the form of IF-THEN and IF-THEN-ELSE rules, procedures, tables

and comments. The fact base stores the specified problem statements and goals, input

facts and conclusions, providing the advantage of being able to modify the input facts

without starting a new consultation. The backward-chaining inference engine also

incorporates additional functions for question generation, explanation, table checking,

executing procedural commands, extra reasoning control etc. The system is

deterministic in the sense that it does not deal with uncertain, imprecise, or conflicting

knowledge The developers of the system have left any non-deterministic solutions to

the engineers using the system.
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The knowledge in SITECLAS was extracted from the Australian Standard AS2870.1,

(which provides a flow chart describing the procedure for site classification) and two

very experienced engineers. The knowledge elicited from the above sources was

implemented in the system as approximately ninety rules, created in groups, so that it

is easier to understand the relationships between them. The system was validated for

five different sites and the results were compared with the results from two

experienced engineers, and found to be in generally good agreement.

The project also came up with several useful conclusions as to the potential of expert

system technology in geotechnical engineering, namely:

1) Effort is required to ensure that the technology is accepted.

2) Custom made tools, those specifically aimed at the geotechnical engineer,

aid in the acceptance of the technology, by giving them access to the facilities that

they require to solve 'real world' problems.

3) Assisting the engineer to make his/her decision was primary, not making

the decision on their behalf.

LOGS [Lok, 1987] is an expert system that treats information from several boring

logs and provides the user with two-dimensional subsurface profiles. It is a rule-based

forward-chaining system written in the OPS5 and Common LISP languages, and has

been implemented in the KnowledgecraftTM environment. The system includes

geological and geomorphological knowledge for deposits of glacial origin in a

specific region (Kane County Illinois). The knowledge was provided by an expert

geologist and by publications furnished by the Illinois State Geological Survey

(ISGS). It was implemented in the system in the form of rules and is divided into

micro- (soil classification, identification of marker beds) and macro-level

(determination of overall trends and specific characteristics of a site) knowledge.

Heuristics are incorporated in the system in the form of production rules that use the

knowledge base to make inferences. The system tries to identify marker beds, lenses
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(wedge-shaped deposits having one terminus within the site), and lentils (strata whose

boundaries exist within the confines of the site) consisting of till, lacustrine or

outwash which are the major geological conditions observed in Kane County area. An

interesting point in the system's inference engine is that a soil can be identified as a

continuous layer, based on the geological knowledge of the site even if this is not

observed in some of the boring logs, provided that no conflicting data exists. The

current version of LOGS comprises approximately 350 rules and future improvements

are identified to be three dimensional interpretation and calibration against the

judgement of experts.

Smith and Oliphant (1991), describe a prototype KBS for civil engineering site

investigation. The prototype system was developed using the Leonardo Development

System, Level 3 shell, which runs on an I.B.M. compatible P.C. supporting MS-DOS.

The expertise was represented in the knowledge base as rulesets, objects, and object

frames. The main ruleset is the central component of the knowledge base. Every

application starts with the execution of a rule in the main ruleset. Execution is

controlled by the inference engine and the goal of the main ruleset. The goal is the

object (variable) whose value is obtained through the Icnowledge base. The inference

engine executes rules in a systematic order, using mostly a backward-chaining

strategy, in order to obtain the desired value.

Each object, in Leonardo, has an associated object frame, which in turn consists of a

number of parameters (slots) set to specific values during the development of the

knowledge base. Object frames can also contain rulesets. The prototype features a

systematic data input facility that helps minimise oversights or omissions of relevant

data. The data obtained from the planning stages of different site investigations are of

a similar form, so it was possible to create multiple choice menus as a means for

getting data from the user. The information obtained is used by the system to provide

suggestions to the user for the following stage of site investigation, the subsoil
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exploration (possible locations of boreholes, trial pits, etc. and suitable types of soil

testing). The variability of data returned from the subsoil exploration stage was

handled by writing external executable programs. The information obtained at this

stage is used for the creation of a 2-D visual representation of the soil layers. The

strength characteristics of the various soil strata are used by the system to make crude

recommendations for suitable foundation types for the ground conditions present. The

prototype system is user friendly, can be used as a learning tool, has a cost saving

capability, and provides the facility for future expansion.

Halim et al [1991], describe a KBS for probabilistic site characterisation developed to

facilitate the planning of site exploration with emphasis on assessing anomaly

statistics. The system has been implemented to perform three major sub tasks. The

inference of the prior estimates of soil and anomaly characteristics, which is mainly

done by using production rules combined with any additional information provided by

the user; selection of the most effective exploration program, using Baysian

techniques to update the prior estimates of soil and anomalies characteristics for the

different exploration schemes considered by the user, and incorporating the calculated

costs; and finally reliability evaluation of the proposed geotechnical system. The

system was developed using the knowledge engineering environment KEE. The

general problem solving strategy of the system uses a data-driven forward-chaining

inference mechanism. The knowledge representation scheme in the system is an

integration of frame-based and rule-based representations, allowing both procedural

and event-driving programming. Future development of the system involves the

inclusion into the system's knowledge of the capability to update the soil properties

based on the site exploration results.

Carpaneto and Cremonini (1991), describe an expert system framework for the

automation of geotechnical design characterisation. The system is based on an

existing expert system (Righetti and Cremonini, 1988) employed for stratigraphic soil
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characterisation. The framework consists essentially of various data bases, containing

information about the site to be analysed, a knowledge base, containing the domain

rules, and an inference engine able to process and to interpret the available data. The

procedure leading to the characterisation of a site takes place in four phases. During

the Input Phase, information from boring logs, penetration testing (if available),

laboratory testing, along with heuristic knowledge about the site (site patterns etc.) is

retrieved from the databases and is used to derive a first trial stratigraphy, and

recognise the principal constituents of the tested soil samples. The data stored in the

working memory during the Input Phase is then cross-checked against rules stored in

the knowledge base and possible conflicts are identified and treated accordingly. The

Comparison Phase also includes the improvement of the initial complex configuration

by combining adjacent layers of the same soil type and the computation of the initial

configuration certainty. The Reduction Phase is the next step, where the construction

of a "best solution" set is carried on by generation of a logical solution tree. The new

configurations are recorded in order of decreasing certainty factors. In the Output

Phase, the best solutions detected for the borehole stratigraphy and the corresponding

design parameters are processed to provide an appropriate display of the results.

Further developments to the system will focus on improved data base management

and graphics software in the system, but more importantly on attempting to enable the

system to deal with sites where preliminary data is unknown.

A KBS was developed by Davey-Wilson (1991) for soil shear strength analysis. The

system uses soil descriptions as input in order to infer their angle of friction in

degrees, to a maximum accuracy of 1 0 +1 0. The user is queried about the particle size

distribution, the grain size, the in-situ density and homogeneity. The more detailed

the answers, the higher the precision of the result. The same system is also used for

educational purposes to simulate the execution of the laboratory shear box test with

step by step interaction with the user, linking geotechnical theory to practice.
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'Gillette (1991) presents a Computerised Adviser on Soil Strength (CASS), a KBS to

assist in the selection of shear strength parameters for use in stability analysis. After

preliminary data has been entered by the user, the system attempts to advise on the

shear strength parameters (I) and c, to make recommendations about the strength

representation in the analysis, to advice on soil behaviour and give warnings about

possible problems. CASS was written using the rule-based expert system shell

Personal Consultant Plus (PC+) and runs on an AT-class PC with extended memory.

The conclusions are reached using a backward-chaining inference mechanism.

Checks on the consistency and validity of the input information are also performed by

the system.

CESSOL (Magnan, 1992) is a KBS for planning a site investigation. Based on

information about the site, the type of construction envisaged and the type of data

required, CESSOL can give qualitative advice on the type of investigation needed,

and what sort of testing would be required. It can also give quantitative advice on the

number of boreholes and piezometers and amount of testing required. CESSOL was

implemented on a PC using LISP with a window style interface. Development started

at the University of Savoie and then by the company CRIL and the Laboratoires des

Ponts et Chaussees (LPC). A knowledge base of 117 rules contains a large amount of

experience from LPC. Magnan suggests that the system was developed due to the

enthusiasm of the instigators rather than any need for the system in geotechnical

practice. The knowledge is over detailed and too high level for it to be useable by

'ordinary' geotechnical engineers.

SAGITAIRE (Vergobbi et al, 1992) is a KBS for processing site investigation data. It

can be used to merge data from soil descriptions, classification data from laboratory

testing and results from insitu tests to form a final borehole log. It has knowledge

bases for identification of soil types (based on the Unified Soil Classification Scheme)
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and for processing results from the Cone Penetration Test (CPT). Having identified

layering from these different sources, it then tries to simplify the log by eliminating

insignificant beds and attemps to identify the major formations. The system was

developed in order to aid in analysis of offshore foundations. The authors reported

that a commercial version would be available by the end of 1992. SAGITAIRE has

been implemented using C++ (object oriented C), CLIPS a rule based shell for

inferencing and GPhigs for graphics. It runs on a Unix workstation and uses the X

Windows user interface. It can access external databases using DB++ and also makes

use of external programs written in Fortran.

Winter and Matheson (1992) and Thomas et al (1992) outline a system being

developed for assisting in the planning of a site investigation. The system contains

knowledge about the different phases and stages of an investigation. An activity log of

an investigation can be produced for comparison against a list of mandatory and

advisory procedures contained within the system. The system can therefore be used to

highlight omissions in the way that an investigation has been carried out which could

impair its effectiveness. It is intended for use on trunk road projects. The system was

developed using the Leonardo shell running under MS-DOS on a PC (286 or above).

The system uses a heirarchy of menus and windows. The rule structure and also the

menu heirarchy can be viewed graphically to locate the user within the system.

Ibrahim (1994) has produced a system which incorporates many aspects of a site

investigation, including the elicitation of the domain knowledge, representation of

heuristic knowledge and the design of a rudimentary geotechnical knowledge based

management system. The system also provides for correlation of lithological

boreholes, estimation of foundation parameters and a graphical interface. The system

has been produced using the Leonardo shell and has been implemented on an IBM

compatible PC. The geotechnical knowledge based management system utilises a
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simple linked flat file structure which does not comply with the AGS data exchange

standard (AGS, 1992).

3.3 Geotechnical Databases

Geotechnical databases have advanced significantly from the early days when

developers used conventional languages such as FORTRAN to write data storage and

access routines. These early systems used punch card technology to provide data

storage covering a wide range of geotechnical areas.

Buller (1964) is credited with the first geotechnical database in use with a system that

stored records for the Department of Mineral Resources in Canada. This systems was

a rudimentary attempt at an electronic data store which was cumbersome in its

operation. To search the database could take repeated passes through various sources,

however the concept of a local geotechnical data store had been established.

Rhind and Sissons (1971) implemented a database for the storage of Drift borehole

records in Edinburgh, ustilising a combination of numerical and free form text

storage. This approach allowed layer description and their associated depths to be

stored in an easily accessible manner. The liberal use of abbreviations and

mneumonics allowed the data to be compressed whilst retaining the essential

meaning. However, as with all the punch card systems the database proved to be so

cumbersome to use that its full potential was never exploited.

Cripps (1978) attempted to set up a borehole database that had a natural language

interface, that is the database could be queried in pseudo-English. This punch card

system could retrieve the details of borehole logs in many formats. Whilst the system

proved effective there was no attempt at a data structure other than that of the original
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input data. Laterly Day (1984) utilised a similar methodology to Cripps implemented

on an interactive microcomputer, allowing for more sophisticated data retrieval and

manipulation.

Early database systems provided the storage required by the user however their

specialisation rendered them difficult to use by other interested parties and they also

suffered from lengthy processing times inherent with their contemporary technology.

Since the late 1980s Database Management Systems (DBMS) and procedural

languages have been used to implement more sophisticated databases that can be

applied to a range of users.

Such a system is Geoshare (Raper and Wainwright, 1987), a geotechnical database

implemented over a seven year period using the CODASYL Database Management

System running on an ICL 2988 mainframe computer. The aim of Geoshare was to

highlight how beneficial centralised data storage could be to the geotechnical

community and as such concentrated on efficient data retrieval, manipulation and

searching. Data entry was restricted to pre-formated data menus yet within individual

data fields free form English could be used. The system proved a successful

prototype, yet by contemporary standards the system was cumbersome in use. The

research highlighted some interesting aspects to geotechnical data storage. The

variation and verbosity of layer descriptions could lead to difficulty in storage and

processing of such data. The requirement for access to such systems by skilled and

non-skilled personnel alike was identified as an important facet as was the need to

produce practical systems - systems that the geotechnical community would actually

use.

The application of microcomputer technology to the production of borehole logs led

to geotechnical data being stored electronically in data files. Whilst not strictly a

database, it is through processes such as this whereby the advantages of electronic
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data storage have lead to the foundation of sophisticated geotechnical databases.

Howland and Polanski (1985) produced a system to produce borehole logs, written

using TA-BASIC and implemented on a Triumph Adler Alphatronic microcomputer.

Data was stored in a sequential file system, allowing for relatively simple data

manipulation. Data was entered via menu driven routines, a novel approach being the

use of self-validation as the data was being input. Simple rules within the BASIC

program allowed invalid input statements to be simply corrected. The output of the

system was a purely textual borehoe log. The work also identified areas where

geotechnical data management could improve the operation of geotechnical

companies, for example the automated inclusion of geotechnical data into the

invoicing systems

Chaplow (1986) produced a borehole log system that allowed graphical as well as

textural data to be presented, utilising a structured data file as a central data store.

This data file was of a fixed format and comprised 10 data fields. This data could be

edited or updated at any time in the future and utilised removeable floppy disks as the

file store. The description of the layer was coded, that is each term within the

description was allocated a one or two letter code. Chaplow created a complex coding

system to allow the full range of vocabulary to be utilised, however coding systems

designed to assist computer systems tend to lead to loss of data. The test of such a

system is if it can return to the original description if required. The finished system

produced good quality graphical borehole logs in a three stage, time consuming

process.

Finn and Eldred (1987) produced a microcomputer system that allowed the production

of borehole logs. The system used a data structure that was actually a part of the C

program in which the whole system was written. Data entry was by menus and the

final borehole log produced was of a very high standard. Systems such as these

highlight the advantages for computerised data management within the geotechnical
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industry. However, custom systems such as this kept the data as part as an integral

part of the package, thereby preventing any form of data exchange (Perry, 1991).

Greenshaw et al (1987) produced the Strata 3 package that was designed as a

geotechnical data management facility. Utilising an ORACLE database, the system

was implemented on a VAX mainframe computer. The data was input manually and

the data structure could be modified by skilled personnel to store a wide range of

geotechnical and related data. Once resident in the database this data could be linked

across to the GINOSURF surface modelling package that allowed complex

stratigraphic images to be produced: In addition multi-surface isometeric projections

could be produced. Strata 3 became available as a commercial product in later years

and is still available today, however all the database systems have been replaced.

Instead of an ORACLE relational database the system now utilise its own simple

ASCII data-file and the product has become an analysis package rather than a

geotechnical data management system.

Greenwood (1988) produced a geotechnical database with a view to defining a

geotecnical data management system. Using the Revelation database system

implemented on an IBM PC, the system allowed laboratory results to be added in the

laboratory, field results and drillers logs in the field. This data was then combined

into the master database, which was used for producing preliminary borehole logs,

sample lists, piezometer and water level details as well as the final borehole log itself.

Greenwood identified the requirement for a structured ASCII (American Standard

Code for Information Interchange) file to enable inter computer transfer. With the

advent of the AGS data exchange standard, this level of inter computer data transfer is

now achieveable.

Commercial software packages came available that allowed the user to input data

from a site investigation and produce the graphical, tabulated and report output
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generally associated with a great deal of manual effort for example gINT (Staten and

Coronna, 1992), SID/GDMS (MZ Associates, 1994), TechBASE (MINEsoft Ltd,

Denver, Colorado, USA). gINT is a good example of such a product. Based on a

Betrieve data file structure this system runs on a Personal Computer (PC) and has a

hierarchical structure to store borehole information. The main aim of the system is

the production of borehole logs and related reports, allowing geotechnical data to be

presented in a professional manner. It is almost as a byproduct of this aim that data

can be stored centrally enabling basic data management tasks to be carried out. Data

input is a manual process and requires the filling in of different forms, that is screens.

It is assumed that each form corresponds to a data file within the overall data

structure, however the actual data structure remains hidden from the user.

The more sophisticated packages provide reporting facilities for presentation of

borehole logs, laboratory test reports etc. as well as graphical displays of test results

against depth (for example), cross-sections, contouring or fence diagrams. These

systems have proved invaluable for the geotechnical profession, allowing professional

data output, both tabulated and graphical, to be readily available. The majority of the

commercially available systems use a Personal Computer (PC) based flat file data

storage system, such as DBase or Clipper. These systems offer the flexibility to meet

the demands of a data intensive environment, albeit on a local scale.

Many 'in-house' geotechnical databases exist that utilise existing database products.

These systems are designed for the express requirements of one sphere of interest, that

is company, government department etc, and are designed to meet precisely their

needs. Products such as DBase, FoxPro, Access and SuperBase which are all PC

based software, can be used to store detailed geotechnical data for a specific purpose.

MacKenzie (1994) has produced a hydrogeological database to data specific to the

groundwater investigation requirements of an area in Honduras. The system has been

implemented in Superbase for Windows for its ease of use and whilst MacKenzie

53



admits to the system's unpolished design, the system is functional and in use daily.

Systems such as these provide the service that is required, however restrict the transfer

of data between other systems due to their own specialisations (Threadgold, 1992).

There have been a number of attempts to set up a national database for the UK. The

work on Geoshare at Queen Mary College, University of London (Day et al, 1983;

Rapier and Wainwright, 1987) had this as its aim. The British Geological Survey

(BGS) has also made a start on such a system (Forster and Culshaw, 1990) and a

national borehole index has been developed for borehole information lodged with

BGS. Howland (1991) strongly advocates the transfer of information from industry to

the BGS, highlighting the commercial, economic and practical advantages of such a

scheme. Whilst a national borehole database would be beneficial to all, data security

and the commercial implications of such a system have been highlighted as possible

areas of complication (Rodger, 1992).

A more realistic approach to that of setting up a national database has been the task of

developing a standard format for interchange of geotechnical information. A standard

format has been put forward by the Association of Geotechnical Specialists (AGS,

1992). There have also been other attempts to develop standard data structures such as

the joint International Society for Rock Mechanics/Society of Petroleum Engineers

initiative on rock properties (ISRM-SPE, 1990). These attempts on standardisation of

data structures for Geotechnical engineering must also be seen within wider attempts

to develop standard data models such as the International Standards Organisation

(ISO) Standard for the Exchange of Product (STEP) model. (Moran, 1990; Watson,

1990).

Only within the framework of a national, or international, standard should the new

generation of databases be designed, allowing the benefits of mass information

storage and transfer to become apparent - both economic and technical (Brink et al,
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1988; Mott MacDonald et al, 1994). Whilst at first there may be a tendency to horde

'in-house' site investigation data, due to the initial capital outlay involved, in the long

term the economic advantage of sharing the data must become apparent. If site

investigation data has already been carried out on a particular location, it is both

practically and economically foolish to duplicate the effort. Also, with the collection

of large quantities of data, the potential for large scale analysis are increased,

providing the industry as a whole with meaningful data.

Whilst there are practical reasons why a national borehole database may present

difficulties, for example who would regulate the costing of the dissemination of the

data, the author believes that the overall effect would be beneficial. If an S.I.

contractor could supply data directly into a client's geotechnical database - data

integrity and processing could be markedly increased. This data could in turn be

passed on to a national database.

3.4 Conclusions

Geotechnical engineering is a very suitable area for the use of knowledge based

systems techniques, due to the nature and type of the data produced and the reliance

upon expert knowledge in the field, rather than 'codified' procedures. There are

several prototype systems in the field, using a variety of software platforms and

programming techniques. It is interesting to note in the published reviews of

available KBS in civil engineering (Moula et al, 1994; Miles and Moore, 1994) that

the most favoured methodologies for the implementation of KBS are changing.

Hybrid systems utilising aspects of rule-based, frame-based and logic programming

are becoming more noticeable as the hardware/software platforms become capable of

supporting more complex systems. The flexibility of these hybrid systems allows the

developer to bring together the advantages of all aspects of KBS technologies.
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Many of the systems have led to a common understanding of both the importance of

• dealing with the data produced in a meaningful manner and approaching the problem

in a structured manner. It is within this framework, especially with a view to

improved data interpretation, that the KBS described in this thesis has been developed

as a contribution to the field.

Geotechnical databases have progressed from their early punch-card days through to

sophisticated database systems to assist the user in the production of borehole logs

and customised reports. Historically geotechnical databases have been restricted to

the requirements of particular user, be they companies, govermental agencies or

individuals. The requirement for a national database in the United Kingdom is

growing as the quantity of data and the cost of requiring that data increases. It is

hoped that the case for a national database will be strengthened with the successful

introduction of the AGS Data Exchange Standard.
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Chapter 4

Development Tools

4.1 Introduction

The tools utilised to develop a Knowledge Based System (KBS) such as SIGMA are

an important component in the overall process. Once the decision has been made it is

very difficult to overturn and therefore due consideration must be made in the early

stages of the project to ensure the most effective solution.

The criteria for the selection of a hardware platform for the duration of the project are

discussed along with the available choices. An important facet in the decision making

process is the incompatibility of certain software packages to operate on some

hardware platforms. This discussion is followed by an outline of the system finally

chosen.

The various types of software environment suitable for the production of the KB S are

then discussed with their respective advantages and drawbacks. A brief discussion of

the implications of the domain to be investigated and the impact on the final software

choice is followed by a summary of the software selection process. The software

environment that was chosen is discussed in detail.

Finally the Relational Database Management System (RDBMS) used for the

development of the GeoTec database is discussed along with an outline of the

operation of such RDBMSs.
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4.2 Hardware Requirements

The requirements for a hardware platform to assist in the development of a large

knowledge based system for site investigations could be stated as follows:

1) To be able to support a large relational database.

2) To be able to support several environments, that is knowledge

engineering, database, operating system, window manager etc.

3) To have multi-user capability with adequate response times.

4) To have ample storage facilities.

5) Purchase and maintenance requirements to lie within financial

constraints.

The first four of these criteria suggest that the platform would be either a large

personal computer (PC) or a workstation. At the time of choosing the hardware, PC's

were evolving at a tremendous rate, yet their processing, multi-user and multi-tasking

capabilities were inferior to those offered by workstations.

The interface between hardware and software platforms introduces a new range of

selection criteria, for only certain hardware platforms are supported by specific

software platforms. The two main factors which seem to affect this interdependency

are the length of time the software product has been available and the customer

demand for a particular hardware platform. With General Purpose Programming

Languages, GPPL's, and to an extent General Purpose Representational Languages,

GPRL's, they are delivered on most major hardware platforms due to their longevity

and general use in computing environments. With expert system shells and

development environments the hardware requirements tend to be more specific, due to

their relatively recent emergence.
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It was decided that to realise the potential of the project, a powerful workstation was

required and a price per performance comparison was carried out on competing

systems. The workstation market, indeed the computing market as a whole, changes

very rapidly so not only must performance and price be considered but also the

reliability of the company, after sales service, warranty agreements and availability of

software.

A Sun Sparc Station 2, manufactured by Sun Microsystems US, was eventually

chosen for its very competitive pricing, 30 MIPS (Million Instructions per Second)

performance and there was an existing maintenance policy with Sun Microsystems

and the University of Durham. In addition, the Sparc2 had been available for two

years in the United States and most software houses supported the Sparc2 computing

architecture, based on the tried and tested Sun4 which it replaced. An additional 1

Gigabyte external hard disk was also purchased to ensure adequate disk storage, along

with the relevant networking facilities. The Sun was delivered with 16 Mega Bytes of

Random Access Memory, RAM, but this was increased to 32 Megabytes to ensure

adequate performance.

4.3 Choice of Software Environment

In the early stages of the project, it was clear that fundamental decisions had to be

made as to the software environment to be chosen for the production of the system.

This choice would be constrained by the requirements of:

1) The need to link directly to a relational database.

2) The need to store domain dependant knowledge clearly and simply.
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3) The flexibility of knowledge representation schemes and inference

mechanisms.

4) The hardware platform.

Referring back to Mullarky (1987) the software options lay in the three pre-defined

categories, a General Purpose Programming Language (GPPL), a General Purpose

Representational Language (GPRL) and an Expert System Shell - including

development environments.

Earlier work by the Geotecl-mical Systems Group at the University of Durham had

been developed in a GPRL, Prolog (Moula, 1993; Vaptismas, 1993). Whilst being a

powerful tool for producing logic based systems, it was felt that the limitations of

Prolog had been reached. This was most noticeable in its ability to interface with

users, linking through to large databases and the large memory overhead required to

run the systems on the personal computers. A move either up or down in the software

hierarchy was therefore required, either 'down' to a GPPL or 'up' to an expert system

shell and/or development environment.

A GPPL approach could have been adopted, whereby the systems would be written in

base level procedural language. This would entail utilising system and third-party

functions for routines such as database access, interface handling and such like and

custom writing those not available and assembling the system with a 'bottom up'

approach. This methodology has the advantage of being able to produce exactly what

is required to achieve the given aim, a flexibility of approach unachievable with an

expert system shell and/or development environment. However, there are major

drawbacks with the approach, namely:
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4.3.1 Knowledge representation

Domain specific knowledge has to be represented. Whilst there are GPPL's available

which can handle classes, C-H- for example, the ability to separate the knowledge

contained in the system from the control thereof becomes difficult. With the advent

of environments like Borland C++, which significantly simplify the process,

transparency of knowledge is achievable yet complex. However, due to the

fundamental nature of the language being used, most things are possible and routines

may be produced to separate the areas of the system as required. This brings us to the

second area of concern.

4.3.2 Development redundancy

In producing a system in a GPPL, the flexibility is sometimes at the expense of 're-

inventing the wheel'. Why should academic researchers be writing programs that

commercial developers have already written? It is a point of much debate, the

interface between academic research and commercial development, but when it comes

to duplication of effort then serious questions must be asked.

The production of, for example, a backward chaining facility would have to be

carried out, in order to process the 'knowledge base', but most expert system shells

and development environments have built-in backtracking mechanisms. These

generic methodologies that will have to be written have already been produced by

commercial developers. The mistakes which have been made and the experienced

gained have hopefully been used in making an efficient solution. Could, and more

importantly, should academic researchers be duplicating these processes? Also,

whilst they may produce a more suitable solution to suit their particular domain, is the

solution as generic as possible and thereby re-usable?
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4.3.3 Developmental resource

The learning curve for understanding, appreciating and beginning to build systems in

a GPPL like C++ is lengthy, indeed some training literature refers to periods up to 9

months. This curve is significantly shortened if the developer has a good previous

knowledge of such or similar languages, but there still remains a lengthy period of

unproductive research. There is, of course, a learning curve with Shells and/or

development environments but not as steep and severe.

When these disadvantages are considered, and the same criteria applied to expert

system shells or environments, moving up the software hierarchy becomes a more

obvious course of action. Also, when the particular domain of site investigation is

considered there are other factors that strengthen the expert shell case.

Data Volume

The quantity of data to be processed at a particular time has the potential to be large.

From the outset it was understood that the problem would be approached at a level

where strata constituents would be broken down to their individual component and

descriptors. Dealing with large numbers of boreholes would therefore involve large

volumes of data. Shells and environments have the ability to handle large quantities

of data.

Inference strategy

The ability of the system to provided a hybrid, not pure, inference mechanism is

required due to the differing types of data to be processed. Geotechnical and related

data can be of numeric, symbolic, descriptive, multi-valued or functional data types

and so requires a flexible inference approach. Most shells offer this variety, or the

ability to produce them simply.
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Development strategy

As the area of Site Investigation is large and far reaching, the ability to add to the

system in both knowledge and functionality is a high priority. With a GPPL, as

previously mentioned, it is complex to separate the knowledge from control, making

system updates difficult and the result non-transparent. Also, utilising a shell with its

knowledge engineering capabilities allows for fast prototyping and therefore

demonstration of systems.

Within the financial constraints of the project both expert system shells and

development environments were considered, with an emphasis on the later due to the

scope of the project.

4.4 Software Selection

Several expert system shells were tested and simple prototype systems were produced

with them to try and identify their relative strengths and weaknesses. In addition,

several development environments were assessed by a process of searching available

literature for critical reviews, visiting academic sites currently using the systems,

viewing promotional literature and assessing their technical requirements. A brief

summary of the assessment process follows.

The expert system shells provide a good 'entry level' point to try out ideas, begin to

develop methodologies for the knowledge representation process and generally reduce

the learning process. They are however limited in scope, with exceptions, and

generally provide only a single strand of reasoning. Their ability to produce usable

and graphically based systems that operate with reasonable response times is poor

and, especially with the lower level PC shells, data links are restricted to the flat file

format.
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It must be stressed however that the majority of the packages that were assessed were

very effective at their core functionality. For example Crystal (Intelligent

Environments, 1987) is a simple yet very effective rule based shell that allows

complex systems to be produced with a minimum of effort. However any attempts to

incorporate database access or complex numeric analysis are difficult to develop and

result in systems that are very slow to use. KnowledgePro (Knowledge Garden, 1985)

is a Windows based package that uses logic programming and simple rule-based

reasoning to develop Windows KBSs. The results can be impressive but window and

resource management are poor and result in systems that are very clumsy to use and

poor in performance terms.

Expert system development environments provide the facility to develop, prototype

and if necessary commercialise operational knowledge based systems. They are sold

with good upgrade and technical support schemes, have proven track records and

histories and finance permitting, provide a good means of approaching large

knowledge domains such as site investigation. Some development environments such

as Nexpert (Neuron Data, 1989) are highly successful environments that are well

established within the commercial arena. They offer the full gamut of knowledge

engineering facilities as well as superb backup facilities that ensure manufacturer

written custom routines can be provided. This quality of product brings with it a price

premium that requires significant investment, which is normally only repayable with

the production of commercial systems.

After a review procedure of several months duration, ProKappa developed by

IntelliCorp US was chosen as the development environment for SIGMA. ProKappa

has developed over many years and evolved through other solid products such as KEE

and KLUE. It offers the ability to apply object oriented programming in conjunction
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with rule based reasoning and its own logic based language. ProKappa is described

fully in the following section.

4.4.1 The PROKAPPA Development Environment

ProKappa is a high level object oriented expert system development environment

(Intellicorp, 1991; Johnson, 1991), running through the X Windows user interface. It

offers a wide range of functionality - including an object manager, rule based

reasoning, inference mechanisms and real time monitoring facilities. The object

manager allows complex hierarchies to be constructed, either graphically or

programmatically, offering inheritance systems and dynamic structures. ProKappa

also has system data links, known as the Data Access System, which allow user

defined ProKappa applications to interface very efficiently with a range of relational

database management systems. This is achieved through system defined object

hierarchies, which ensure rapid data transfer and ease of construction and

maintenance.

The PROKAPPA system provides an environment for developing and delivering

multiplatform software applications. Recent upgrades of the PROKAPPA system

have made it possible to produce Windows 3.1 executables from a workstation based

development system. It is a C-based software development system that integrates

object-oriented programming, rule-based reasoning and SQL database access in an

easy to use graphical environment. Some of the main features of the PROKAPPA

system that were used in building the SIGMA application are discussed in some depth

below, whilst the others are just introduced briefly.

4.4.2 Object System.

In PROKAPPA the basic structure for representing data is called an object. Objects

can hold descriptive data about the entity, thing, item, concept, category or template

being represented and can contain special functions which define behaviour for the

thing being represented.
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The PROKAPPA system has two kinds of objects: classes and instances. Classes are

templates for sets of entities with common characteristics, and instances represent

individual objects in the application domain. The application domain is that area

which PROKAPPA has assigned to a particular application or project. Each

application is described in full by its application definition, or .app file, which

informs PROKAPPA what C files, ProTalk files and other system resources are

required to load and run the particular application.

The PROKAPPA object system supports arbitrarily complex hierarchies of objects.

Object hierarchies are stored in collections called object bases or knowledge bases.

Objects and object hierarchies may be static models. They may also be dynamic as

they can be created, modified and deleted at runtime. The data in an object can be

accessed and/or changed by functions, rules and methods, supported by an extensive

library of functions for creating and manipulating objects.

Classes and instances are organised hierarchically. The terms subclass and superclass

are used to describe relationships between objects of a hierarchy; subclass denotes a

class further down the hierarchy from a specified class and superclass denotes a class

further up the hierarchy from the specified class. Within an object hierarchy, the first

object, that which precedes all others is known as the topclass object whilst all other

classes below that are known as subclasses. At the bottom of the hierarchy are

instances which may have no other class below them. This is shown diagramatically

in Figure 4.1.
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Figure 4.1 - Diagrammatic representation of ProKappa object hierarchy

Both classes and instances have slots which represent characteristics or attributes of

objects. Slots represent three type of information: i) Attributes or descriptive

information about an object, ii) Actions, called methods, that the object can perform,

iii) Relationships to other objects in a system. There are three kinds of slots: i) Single-

value slots, which are used to store values as symbols, strings or numbers, ii) Multi-

value slots, which can hold an arbitrary number of values of any type represented as a

list of values and iii) Method slots which contain procedures that define the behaviour

of an object.

The object system supports inheritance. There are two types of inheritance in

PROKAPPA: a) slot inheritance which is the inheritance of the existence of slots

down the object hierarchy to lower level objects and b) value inheritance which is the

inheritance of slot values down the object hierarchy to lower level objects that have

inherited the slot. Slot inheritance, or value inheritance only, may be blocked at any

level in the object hierarchy preventing the slot or the slot value from being inherited

further down.
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Slots can be further described by the use of facets. Facets are descriptors attached to

slots which allow additional information about slots or slot values to be expressed.

Like slots, facets have structures and values (a single value or multiple values) and

can be inherited.

4.4.3 ProTalk Language

In the PROKAPPA system two languages can be used to implement applications, the

C language as extended by PROKAPPA and the ProTalk language.

The PROKAPPA environment supports a version of the C programming language,

Saber C, modelled on the ANSI standard plus several libraries of C functions for use

specifically within PROKAPPA. However, this version of C varied significantly from

those predominantly used at Durham and whilst being flexible and powerful did not

have the sophistication of the ProTalk language, which was used extensively for the

development of SIGMA.

The ProTalk language is a language developed specifically for use in the PROKAPPA

system and can be used as an alternative to, or in combination, with C. It is

particularly useful for writing code that expresses relationships between objects and

facts and performs searches over object bases. The ProTalk language incorporates a

set of pre-defined functions for interacting with object bases and manipulating objects

and provides syntax for referring to information in an object base that can be used for

manipulating or retrieving information about objects, slots and facets. The ProTalk

language also offers several .programming constructs such as assignment of values to

variables, basic arithmetic operations, comparison operators, conditional statements

and iteration constructs. It has the ability to call C functions and incorporate C code.

In addition to all this, ProTalk is a non-deterministic language which supports

backtracking.
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ProTalk is a hybrid language combining aspects of both procedural and rule-based

languages. It can be used for writing functions and rules. A ProTallc function is made

up of one or more ProTalk statements. Each simple statement ends in a semi-colon. A

compound statement is a sequence of zero or more statements wrapped in a pair of

curly brackets ({}). Each statement consists of some combination of ProTalk

operators, expressions, programming constructs, function calls and variables. In

ProTalk there is no need to declare variables before using them, as is required when

writing code in C. A function is defined by placing the keyword function in front of

the function name, which is followed by a pair of parenthesis enclosing its arguments

separated by commas. ProTalk code is interpreted at runtime, that is each function is

compiled line by line as it is being run within the development environment.

Individual ProTalk files may be complied before running, still within the development

environment, giving much faster performance due to not requiring run-time

processing.

Rules can only be written in the ProTalk language. These are a combination of

ProTalk statements grouped together in rulesets and can be either forward chaining or

backward chaining as well as mixed forward /backward chaining rules.

4.4.4 User interface tools

The Prokappa system allows for building customised end-user interfaces for

applications to be built and provides two tools for their development:

• The Active Images system

• The dialog box system
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The Active Images system is a tool for building business and instrumentation images

to represent slot values graphically. This tool has not been utilised in developing the

user interface for SIGMA, and therefore will not be discussed in any more detail.

The dialog box system is used for obtaining arguments or options required by a

command or process which a program is about to execute. It is also used to display

information, for instance, on the progress of a processing action. A PROKAPPA

dialog box is a window that displays information or provides the facility to input

information. A dialog box allows the user to input information in a variety of formats,

using the keyboard or the mouse.

The components of a dialog box used to display information, accept information, or

initiate action are called controls. In effect, a dialog box gets its functionality from

the dialog box controls. The dialog boxes and each of its controls are implemented as

instances of appropriate classes incorporated in a system object base called

DialogBoxApp. These classes represent the types of dialog boxes and dialog box

controls supported by the PROKAPPA system. Each non-display control in a dialog

box has an associated React! method which defines what happens when the user

interacts with that control, e.g. depressing a push button. It is by the writing of these

React! methods that PROKAPPA applications can gain behaviour through interfaces.

All the dialog boxes in version 2.1 of the PROICAPPA system conform to the Motif

standard, an industry common standard for X Windows management systems.

The PROKAPPA development environment supports an interactive Developer's User

Interface for the rapid prototyping and development of applications. The

PROKAPPA Developer's User Interface consists of the Application Browser, that

manages the creation, editing, loading and compiling of the different components of

an application, the Object Browser which is a graphical environment for the creation,
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modification, viewing and saving of objects, slots and facets, the C Workbench which

is a code interpreter as well as a source code C debugger, the Pro Talk Workbench

which is a tool for debugging ProTalk code and the Interface Workbench that gives

the ability to the developer to graphically create dialog boxes for end-user interfaces.

Within the PROKAPPA environment any of the above types could have been used

within the framework of the DialogBoxApp, which has the form of a windows based

system.

Having being designed with a modular methodology SIGMA has a naturally

occurring structure that suits the application of a menu based system, allowing system

functions to be easily executed and allowing for the repeatability that 'what-if

situations require. All the data manipulation routines utilise an automated form filling

method, whereby the forms are dynamically created from the specification of the data

table. The form filling method also allows for data verification on entry to be

implemented before the data is entered into the database. This has proved difficult to

implement in the PROKAPPA system due to the limitations of PROKAPPA version

2.1 dialog box system, however the basic functionality has been incorporated. This

area is discussed further in Chapter 7.

4.4.5 Database Access

The PROKAPPA Data Access System supports links to either flat files or SQL

relational databases through database mapping. It was through these database

mapping facilities that the GeoTec database was linked through into the PROKAPPA

environment. This facility is covered in greater detail in Chapter 6.
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4.5 The INGRES Relational Database Management System

The GeoTec database has been designed and implemented using the INGRES

Relational Database Management System, RDBMS (INGRES, 1990a). INGRES

provides multi-user access to a centralised data structure and is accessible via the

industry standard Structured Query Language (SQL), as well as various INGRES

variant query languages. INGRES is available to the academic community through

the Combined Higher Education Software Trust (CHEST) agreement and as such is

fully supported.

The INGRES RDBMS consists of three main components; the data manager, the user

interface and the query language, see Figure 4.2

Figure 4.2- INGRES Architecture

4.5.1 The Data Manager.

The data manager accepts the query language instructions and performs specified

operations on the database. All basic INGRES tasks, such as data updates and

retrievals, are performed by the data manager. However, the user never interacts
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directly with the data manager. Instead, the user must give instructions to INGRES

through a User Interface

4.5.2 The Query Language

The query language passes instructions to the data manager from a user interface.

There are many user interfaces that request different database tasks. The terminal

monitor for example allows the user to enter data and direct instructions for the data

manager by entering query language statements. Other interface allow data

manipulation by INGRES forms and menus. These form based subsystems then send

the appropriate query language statements to the data manager. Third party software

can also communicate directly with the data manager using an embedded query

language in the host software. Equally the host software can produce its own queries

and pass them directly to the data manager.

The standard set for a query language is the Structured Query Language (SQL),

subsets of which can be translated across database systems. SQL allows data to be

selected, inserted, modified and deleted within an existing database. The technique

employed by SQL is that of "automatic navigation" through the database, so that SQL

is produced to describe what is to be carried out and not how (INGRES, 1990b).

A simple example of SQL code is given in Figure 4.3, where data from the proj table

is requested subject to criteria.

select *
from proj
where proj.proLid = "112343/c"

Figure 4.3 - Example of SQL code

The 'select *' syntax instructs the database to extract all the fields in the named data

table whilst the 'from' identifies the table to be used. The where clause identifies the
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selection criteria to be used for the extraction. This simple example gives an

indication of the functionality of SQL, more complex statements can produce

powerful selection algorithms.

4.5.3 The user interface

A user interface enables the user to give instructions to the data manager. The user

interface accepts instructions from the end user and forwards them to the data

manager via a query language. A form based application subsystem frees the user

from having to memorise the specific query syntax and provides a working

environment that is ideally suited to developing a database structure. Using third

party software essentially bypasses the INGRES provided user interfaces when

accessing an existing database.

INGRES also provides network support via the INGRES STAR and INGRES NET

sub systems. INGRES NET allows multiple INGRES sites to be connected regardless

of the hardware platform, so enabling a PC in one location to access a workstation

based INGRES database in another location. INGRES STAR allows for databases at

several locations to be combined together as one database across a network, allowing

data to be available for anyone who requires it and making data duplication

unnecessary.

4.6 Conclusions

Much work was carried out to try and ensure that the correct combination of hardware

and software was chosen for the production of SIGMA. The increase in performance

of PCs meant that there was little difference between them and workstations in the

choice of a hardware platform. However when considered in conjunction with the

software to be utilised, the data volume that could be involved and the requirements
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for multi-user capability the Sun UNIX workstation was deemed the most appropriate

choice.

The software environment chosen, ProKappa, offers a flexibility and professional

product unattainable with the equivalent shell systems. The object oriented

functionality, inherent non-determinism with the ProTalk language and its ability to

link with external data sources fulfilled the envisaged project requirements.

The INGRES RDBMS provided an ideal environment for the development of the

GeoTec database. Fully supporting the SQL syntax ensured that the GeoTee database

would be compatible across a wide range of hardware and software platforms.

INGRES's sophisticated record locking and networking facilities would also ensure

that secure database access could be allowed over a global range.
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Chapter 5

SIGMA - A System for the Interpretation of Geotechnical

Information

5.1 Introduction

SIGMA (System for the Interpretation of Geotechnical Information) is a knowledge-

based system which has been developed at the University of Durham, School of

Engineering and Computer Science over the last 4 years. SIGMA has been developed

using the expert system development environment Prokappa, (IntelliCorp, 1991) and

is currently implemented on a Sun Sparc2 workstation.

The objective of SIGMA is to aid the geotechnical engineer in arriving at an informed

judgement, based on the data available. This is achieved by assisting in the data

management of a site investigation and providing interpretation routines to assist the

geotechnical specialist in making informed decisions. The core of SIGMA is the

GeoTec database which stores ground investigation and related data. SIGMA also

contains a number of knowledge bases, each of which contains knowledge about the

ground, geotechnical tests and correlations between geotechnical parameters.

Modules within SIGMA allow specific tasks to be carried out i.e. parameter

assessment, borehole interpolation, data checking and parsing of soils descriptions.

SIGMA has been designed in such a manner that it can organically grow as

knowledge concerning a particular domain becomes available. Additional databases
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could be added allowing access to other data structures and more processing and

analysis sub-systems can be added at a later date.

5.2 The Role of SIGMA

5.2.1 Data Management

As information technology becomes increasingly commonplace in the area of site

investigation, the importance of ensuring continuity and integrity of data rises.

Electronic storage, manipulation and retrieval of data is only meaningful if the process

is as least as productive and efficient, and hopefully significantly more so, than the

respective manual transaction. As the use of electronic site investigation data

gathering in the field and laboratory becomes more widespread, the requirements to

store and process this data become more important (Naylor, 1992).

The quantity of data generated from a medium sized site investigation, say 30

boreholes, is large and can involve a noticeable administrational overhead; the larger

the investigation, the larger the overhead. Electronic data management can be seen to

be more effective as the size of the investigation increases (Institute of Civil

Engineers, 1991) and this need has been met by several software companies who have

developed systems to mimic the manual process involved with the production and

storage of borehole logs, with great success, for example gINT (Staten & Caronna,

1992) and SID-GDMS (Mott MacDonald Ltd, UK).

These data management systems allow greater flexibility for the management of a

project, more direct and immediate access to the data thereby provided and high level

of data security. This security issue is not confined to the protection of sensitive or

confidential data, but electronic data can be archived' regularly by means of

incremental backup systems, so preventing accidental loss or damage.
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However, as with most competing software products, there are differences in the

manner in which these systems operate, but more importantly, the manner in which

they are able to transfer data. Most of the systems currently available have the ability

to read and write data to a file in the ASCII format (flat file transfer), which enables

most software packages to talk to each other. However, this approach may require pre

or post processing to ensure that the data is entirely in the correct form for entry into

the appropriate system. This additional processing may be intensive and the degree to

which it is required may vary from one software package to another. This variety may

lead to the introduction of errors. With the advent of the AGS Standard for Electronic

Transfer of Geotechnical Data from Ground Investigations (AGS, 1992), the industry

has a standard to adhere to for electronic transfer and hopefully this will lead to a

more uniform approach, not only to data transfer but also data management.

The GeoTec database not only conforms to the AGS standards but attempts to take the

standard further by defining data types and lengths for the specific fields, an essential

step in producing a relational database. The GeoTec database really is the core of

SIGMA. It is not only an external data store but an area of the system which is

available for the transferring and receiving data. The manner in which these transfers

take place is via the same methodology as the knowledge representation scheme in the

knowledge bases (that is frame based). This enables data imported from GeoTec to be

quickly and easily assimilated.

SIGMA has been designed using a modular methodology which has several

advantages as will become clear in this thesis. One of the most important is the ability

for the system to grow organically. With GeoTec as the central core there are hosts of

additions that could be made in order to make the system more useful to the

geotechnical specialist. Additional knowledge bases, case history databases, storage

of 3D ground models and additional processing modules can all be added to the

existing system. The production of borehole logs, as mentioned previously, is a task
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that is suitable for computerisation and benefits from the direct access to the data

store. With a large central store the production of logs as required could significantly

reduce the paperwork systems within a large geotechnical company, also allowing for

custom reports to be easily produced.

Being mounted on a workstation platform also allows for networking to peripheral

machines, from within the same building to across the globe. All employees of an

organisation can then have access to the same data source and as that source is

continually updateable, everyone has access to the same level of data at the same time.

Data verification need only occur once, reducing the duplication of effort and

enforcing an organisation wide standard. In short, the potential offered for centralised

data management to significantly improve the operational efficiency of geotechnical

companies, coupled with the availability of interpolation and assessment routines, is

large.

5.2.2 Data Interpretation

As mentioned in Chapter 3, there are many computing systems in use in the civil

engineering world that utilise Knowledge Based Systems (KBS) technology, but there

are also widespread feelings on their applicability, 'suitability and reliability. Many

modem day knowledge based systems could be more suitably termed Decision

Support Systems (DSS) that is systems that assist the user in their decision making

processes. The manner in which this may be achieved is varied, from supplying the

user with the relevant reference documentation and on-line guidance, for example

hypertext systems, to checklist type systems which ensure that the user has covered all

eventualities.

SIGMA has been designed as a Decision Support System (DSS). SIGMA allows the

user to reach decisions in the most informed manner, by allowing the user access to

many different types of data and by assisting in the carrying out of mundane cross-
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checking. However the user is not excluded from the decision making. SIGMA also

offers features over and above this, for example the data management mentioned

earlier, borehole interpolation and parameter assessment.

SIGMA's parameter assessment facilities allow a geotechnical specialist to assess

parameters for use in the design process at specific locations of a site and if direct

measured data is not available correlate the required parameter from other data.

Borehole interpretation routines allow the user to perform borehole to borehole

correlations in order to assess the sub-surface conditions. It should be stressed that all

the modules that offer predictive results allow the user the opportunity to consider

differing possibilities in order to gain a clearer picture of the outcome.

Computing systems that offer, or purport to offer 'expert' solutions to any engineering

based problem will always be open to scepticism, for expertise is not something that

can be gained merely by the purchase of software, it is gained through years of

experience. KBS's or DSS's offer the geotechnical specialist another tool with which

to assist them in carrying out their profession, a non-exclusive addition to their

existing knowledge and experience. Moreover if the system can be seen to be

organic, that is as the knowledge of a particular domain grows this can be simply

added to the system, this can only assist the acceptance of such technology.

To conclude, SIGMA is a decision support system, not a pure 'expert' system -

although the knowledge bases do contain the aggregation of experts' knowledge. Its

role is to guide the user through the more complex geotechnical aspects of a site

investigation, that is assessment of design parameters, the interpretation of borehole

data and the management of the vast quantities of data.
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5.3 The functionality of SIGMA

5.3.1 An Overview of SIGMA

In order to clearly illustrate the functionality of SIGMA, Fig 5.1 shows how the

system can be visualised as 'levels' radiating out from a central core. It can be seen to

consist of 4 levels centred on the core database (Toll et al, 1992). The initial level

comprises the ground investigation database, GeoTec, containing the geotechnical and

related data which requires interpretation. GeoTec is discussed in detail in Chapter 6.

Additional core databases can be added at a later date, such as a case history database

to take advantage of historical precedents.

Fig. 5.1 Schematic Representation of SIGMA
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5.3.2 Knowledge Bases

The second level of SIGMA currently comprises three knowledge bases. These

contain 'general knowledge' about geotechnical engineering, represented in the

hierarchical manner previously described in Section 4.4.2. The knowledge bases all

utilise the functionality of the PROKAPPA object system, with the data being stored

in both multi and single value slots and, where appropriate, facets.

5.3.2.1 Ground Knowledge Base

A Ground knowledge base contains knowledge about soils and rocks. This

knowledge base is the combination of the work of Toll (1992), Moula (1993) and

Giolas (1994) and takes the form of typical ranges of parameters (e.g. compressibility,

strength, permeability etc.). Starting from the topclass object ground, the subclasses

progress through generic ground types through to specific soil types. This knowledge

base is shown graphically in Appendix 5. Moula (1993) developed routines capable

of searching through the ground knowledge base in to either identify the ancestry of a

particular ground type and also value ranges of a given parameter for that soil type.

Also routines were produced which could allow a user to interrogate the knowledge

base to locate which soil type had a particular value of a given parameter (Moula and

Toll, 1993). This allowed the inexperienced user to both learn about and identify soil

types by their properties. Giolas (1994) has produced a modified Ground knowledge

base supported by an interface that allows default ranges for specific ground types to

be updated and also provides applicability data for correlations.

5.3.2.2 Test Knowledge Base

A Tests knowledge base contains knowledge about different geotechnical tests, this

knowledge base is shown graphically in the Appendix 6. Objects become more

specific as the hierarchy is traversed until specific tests are encountered as instance

objects. Each test instance has a test_code slot that contains the same test code as that
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used to identify the tests in the GeoTec database. This methodology allows efficient

matching of test objects with the relevant data contained in the database. The

knowledge currently stored as slots on each test object can be subdivided into the

following two groups:

Reliability and Applicability

The reliability of a test is an indication of how reliable a particular test is at measuring

a given parameter. The reliabilities are sub-divided into high, low, medium and none

and this is achieved by assigning each reliability as a facet on the slot Reliability, as

shown in Table 5.1.

Reliability Parameter
High paraml, param2
Medium param3
Low
None

Table 5.1 - Storage of reliability knowledge in Tests knowledge base

This allows one slot on an object to store a range of knowledge about a particular test.

Similarly with applicability which is an indication of how applicable a particular test

is for a given soil type. Again the applicabilities are subdivided into high, medium,

low and none utilising facets on the Applicability slot of the appropriate object, as

shown in Table 5.2.

Applicabilit
Y

Soil Type

High soill, soi12, soil3
Medium
Low soil4
None

Table 5.2 - Storage of applicability knowledge in Tests knowledge base

The data for both reliability and applicability were taken from Moula (1993) and were

based upon the results of a knowledge acquisition exercise carried out using a
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questionnaire distributed to a group of experts in the field. Reliability and

applicability are used by SIGMA to give user guidance during the operation of the

parameter assessment module.

Frequency, Test Objective and Test Cost

This additional knowledge is included as a generic source that may be consulted at

any time as additional information. Frequency gives an indication of how often a

specific test is used (classified as Routine, Less Common, Specialist Test), test

objective stipulates the main objective of the test and test cost gives an indication of

the test cost, that is high, medium or low. Presently no SIGMA modules access this

data.

5.3.2.3 A Parameter Correlation Knowledge Base

A Parameter Correlation knowledge base contains knowledge of the different

empirical correlations which exist for relating geotechnical parameters. This work has

been carried out extensively by Giolas (1994). The knowledge base can be updated as

new correlations are discovered and may act either as a stand alone system or as a

module of SIGMA. The parameter assessment module utilises this knowledge base in

its final stages and as such is discussed again in Chapter 8.

5.3.3 SIGMA Modules

The third level of SIGMA consists of generic modules i.e. those that are required

whatever type of geotechnical application is being investigated. These modules,

discussed in greater detail in later chapters, currently comprise:

Data handling - data import, export, soil description parsing and database interfaces

Data checking - cross checking of values and parameters to ensure data integrity
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Parameter assessment - assessment of parameters utilised in the design process

including parameter correlation

Borehole interpolation - the assessment of sub-surface conditions.

The fourth level contains the modules which are specific to a particular application

(e.g. foundations, slopes, tunnels) and can be considered to be the specific .user

interface to the system for particular tasks. These fourth level modules are beyond the

scope of this thesis.

As can be seen, SIGMA has been implemented using a modular approach, allowing a

prototype system to be available for use and demonstration at an early stage. As more

modules become available, they can be independently tested and then incorporated

into the existing prototype, gradually building up the final version. This modular

approach allows the system to be continually updated, allowing for new areas of

interest to be investigated and new techniques to be applied.

The various knowledge bases and the core database of SIGMA are used either in

conjunction or independently to supply the geotecluiical specialist with information to

assist in the decision making process. The GeoTec database is linked directly to the

system via Structured Query Language (SQL) commands and can be accessed either

as a part of a SIGMA module or independently to provide additional data.

The inference mechanism of the system is provided in the main by the ProTalk

language, a General Purpose Representational Language (GPRL) provided within the

ProKappa development environment and described in detail in section 4.4.3. The

ability of ProTalk to allow non-deterministic programming to be written alongside

procedural functions, and the direct access it allows to the objects contained in the

knowledge bases enabled the inference mechanism to be written in a flexible and

practical manner.
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ProTalk code is structured somewhat differently from procedural code in that the flow

of the program is dictated by the object base and the interface with the user. To

merely browse through reams of computer print in an attempt to understand the

functionality of a computer program is never an easy task but with ProTalk it is

significantly harder. The code that makes up SIGMA is included with this thesis

Appendix 8.

5.4 Conclusions

SIGMA has been developed as a Decision Support System to assist the geotechnical

specialist in two specific areas; data management and interpretation. By providing a

centralised data store, and allowing several levels of access to that data, SIGMA

provides an important data management role. As the quantity of electronic site

investigation data increases data management will become an increasingly important

aspect of geotechnical companies.

Interpretation routines assist the geotechnical specialist in their decision making,

hopefully leading to more informed decisions. Assessment of design parameters is an

important task and SIGMA provides a straightforward interface to allow the user to

examine selected locations and correlate parameters if required. Borehole

interpolation routines assist in the determining of sub-surface ground conditions

utilising borehole to borehole correlations.

The modularity of the SIGMA design allows for generic growth of the system as new

process are added and new knowledge sources obtained.
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Chapter 6

The Geotec Database

6.1 Introduction

The relational data model and the increasing importance of a data management to a

site investigation have been detailed in sections 2.7 and 3.3. As stated in section 5.1,

the central core of SIGMA is Geotec, a ground investigation database. In this chapter

the design history of the database is discussed followed by a detailed discussion of the

relational structure of the Geotec database. This structure identifies what could be a

standard for geotechnical data structures, including a methodology for the storage of

parsed layer descriptions and detailed test data storage.

The mechanism by which the database and the PROKAPPA development

environment combine is discussed in detail, along with the operation of the Unique

Identifier (UID) methodology. This is followed by a discussion on the manner in

which the two systems communicate through the Structured Query Language (SQL).

6.2 Design History of Geotec

The evolutionary process which has led to the final implementation of Geotec has

involved the production of several interim databases and standard database design

methodologies.

On examining the various data models, see section 2.7, it was decided to implement

the relational model, due to the broad range of data to be stored, redundancy
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minimisation and to accommodate the widest possible querying potential for the user

(Giles, 1992). The importance of multi-user capability and the ability to store

potentially vast quantities of data, coupled with the dynamic integrity checks and

associated stability that come with large scale RDBMS were important factors in the

decision. In addition, the software and hardware requirements to implement such a

RDBMS lay within the constraints of the project.

Due to the nature of the hardware platform and the available database and

development software, the connection between the two systems could be seen to be

of the enhanced expert system type (see section 4.3.2). This mode of connection

allows the finalised knowledge based system to retain control over the flow of data,

i.e. dictates when data is to be transferred. This enables SIGMA to retain the desired

control over the data transfers throughout the consultation process, whilst still

allowing the database to be accessed as a separate entity by non-SIGMA users. A

tight coupling approach was deemed most suitable, as the software permitted such a

connection and it provides the system with the greater flexibility and control.

Identifying the data to be stored in the database was carried out by establishing a data

dictionary. This dictionary not only collects the data in one central reference location

but allow the formation of field types and lengths to be carried out at an early stage in

the design process. The sources used to collate this data were the appropriate British

Standards (BS 1377, 1990; BS 5930, 1981), that available from the AGS standard

(AGS, 1992), several projects being undertaken at the University of Durham (Moula,

1993; Sylvester, 1991; Mavroidi, 1993) and through collaboration with Scott Wilson

Kirkpatrick and Partners, the civil engineering consultancy group. This process

identified the entities to be stored in the final data structure, an entity being a

conceptual model representation of an object in the real world, for example a

borehole.
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Once the relevant entities had been identified, their inter-relationships, attributes and

primary keys could be identified. Attributes are properties that are possessed by an

entity. For example, the entity borehole has amongst its attributes borehole

identifier, final depth etc. The primary keys ensure that the data held within a given

row of a data table can be uniquely identified (section 2.6). An Entity-Relationship,

ER, diagram was produced, enabling the relationships between entities, e.g. one-to-

one and one-to-many to be clearly defined and a 3rd order normalisation analysis

subsequently performed. Normalisation is the process whereby conceptual data

models are transferred into a form acceptable to relational database (Codd, 1970).

The result of the normalisation process is a data model that has a minimum level of

duplication and redundancy, the relationships between the attributes (fields), are

clearly shown and a more flexible data model is produced (Bamford and Curran,

1987; Date, 1983). On the completion of the normalisation process, individual tables

could be translated directly from the entities, their columns identified along with the

referential keys required to link these tables in their associated relationships, giving

rise to the structure shown in Fig 6.1.

The database was actually produced by writing SQL script files in an INGRES

interface subsystem known as Interactive Structured Query Language, ISQL. This

enabled the lengthy commands required to produce the database to be saved to an

ASCII file and executed as a separate process. If changes were then required to the

database, the original version was be removed, changes made to the SQL script files

and the database remade. And example of an SQL script file is included in Appendix

3.
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6.3 Data Structure of Geotec

An outline schema for the database is shown in Figure 6.1, where the boxes represent

tables in a relational database structure.

Fig. 6.1 - Schema for the GeoTec Database structure (see Fig 6.2 for legend)

Each table stores data which represents a data group, the data group being a function,

property or parameter of the site investigation. This structure produces an efficient

structure for data retrieval and handling, necessary for the potential volume of data to

be stored. A full listing of all the tables in the database, their data fields, data types

and a description of the field's purpose are shown in Appendix 1.
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Figure 6.2 - Legend for GeoTec database structure

As far as possible the table names have been adopted to be compatible with the AGS

headings (AGS, 1992). The top level table is the proj table which contains

information on the location and date of the project and the parties involved. A

departure from AGS is the inclusion of a geology table geol which has been linked to

the proj table through the proj_id key. The geol table allows storage of identified

geological horizons which could exist at the site. This stratigraphic information will

generally be obtained from a desk study at the feasibility stage of the project before

any ground investigation has been started (boreholes or trial pits). Therefore the

information need not be related to specific holes but is attached at the project level.

The information can be linked to specific layers identified at a later stage (during or

after the ground investigation) using the horz_no field. Other tables for storing desk
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study (sources) information could be attached at proj level. This is an area that has

not been addressed by AGS who have concentrated only on ground investigation data

(i.e. borehole and trial pits investigations). The other departure from the AGS

standard has been the inclusion of data structures to store parsed ssoils descriptions,

as noted in the following sections.

The term Hole has been adopted as the generic name for boreholes, trial pits or shafts

(as per AGS). The hole table contains details of boreholes or trial pits such as

location, date and method of boring. The details of the ground conditions observed at

the hole are stored in the lay table. This contains depth and thickness information

about the layers observed, and these can be linked to the appropriate geological

horizon in the geol table. Also present is a text field containing the soil or rock

description. The reasons for maintaining this text field are described below.

Minor comments on the ground conditions which are identified by a particular depth,

and which do not correspond with layer depths, are not stored in a structured form

but are held as text fields in the drem table, attached at hole level. Fracture spacing

data is also stored separately in the frac table. This is also attached at the hole level,

rather than being identified with a particular layer (Fig. 6.1). This is because zones of

similar fracture spacing identified will not necessarily coincide with layer

boundaries.

6.3.1 Soil and Rock Descriptions

Current database systems only store soil and rock descriptions as text fields. These

descriptions can be long and complex, for example Moist reddish brown stiff thinly

bedded closely fissured silty sandy CLAY with a little dark greenish grey sub-

rounded fine gravel and frequent inclusions of sand. If information needs to be

abstracted from the description, say the consistency of the soil (stiffl, the text

description must be parsed. To parse a description each time a piece of information is
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needed from it would be very time consuming. A more efficient practice would be

for the description to be parsed once, and once only, at the time of data entry. The

information contained in the description would then be stored as separate fields

within the database, and would be easily and efficiently accessible.

To develop data structures for storing the information contained in a soil description

is not straightforward. A large amount of varied information is contained in the

description and the vocabulary used is often complex. Therefore the task of

developing a representation scheme which can handle the full range of information is

difficult. However, having said that, much of the very detailed information contained

in the description plays only a minor role in engineering design. A representation

scheme which can handle the majority of soil descriptions was put forward by Toll et

al (1991), and this scheme has been adopted in the implementation of the database.

Since it is possible that the structured representation will not be able to handle some

of the more esoteric descriptions which can be found on borehole logs, provision has

been made in the lay table to store the description in its full form as a text field.

Therefore, the full description is always available to the engineer processing the data

if required, although interpretation of the data by the KBS will use the structured

representation. It will be seen that the structured representation is still very detailed;

it might even be argued that it is too detailed for the purposes of most investigations.

However, it is felt that a reasonable compromise has been reached on the ability to

represent very complex descriptions without carrying too much redundant

information. Example tables covering those tables used in the storage of the parsed

soils description information are shown in Table 6.1.

This format can also deal with the case where a soil or rock changes significantly

from the top to the base of a layer eg Silty SAND becoming Clayey SAND. The first

stratum Silty Sand would be identified in the stst table as Top and Clayey SAND as a
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separate stratum identified as Base. Other information pertaining to the structure can

be recorded such as bedding dip, orientation and spacing, or frequency of inclusions.

Layer Table
Project

ID
Hole
ID

Layer
No.

Depth
to top

Thickness Description Legend
Code

Horizon
No.

7702 B5 3 3.00 9.00 Thinly spaced layers of moist stiff CLAY
interbedded with thickly spaced moist firm
SILT. Bedding dip 167/05°

2

7702 B5 4 12.0 8.15 Red and brown mottled stiff silty CLAY
becoming brown very stiff clayey SILT

2

Strata Table
Project

ID
Hole
ID

Layer
No.

Stratum
No.

Main Constituent Moisture
Condition

Consistency Weathering

7702 B5 3 1 CLAY MOIST STIFF

7702 B5 3 2 SILT MOIST FIRM

7702 B5 4 1 CLAY STIFF

7702 B5 4 2 SILT VERY STIFF

Stratum Structure Table
Project

ID
Hole
ID

Layer
No.

Stratum
No.

Structure
No

Structure Spacing Dip Orient. Surface

7702 B5 3 1 1 INTERBEDDED THIN 5 167
7702 B5 3 2 1 INTERBEDDED THICK 5 167
7702 B5 4 TOP

7702 B5 4 BASE

Constituent Table
Project

ID
Hole
ID

Layer
No.

Stratum
No.

Constituent
No

Constituent Amount Grading Shape Texture

7702 B5 3 1 1 CLAY MAIN

7702 B5 3 2 1 SILT MAIN

7702 B5 4 1 1 CLAY MAIN

7702 B5 4 1 2 SILT SECONDARY

7702 B5 4 2 1 SILT MAIN

7702 B5 4 2 2 CLAY SECONDARY

Colour Table
Project

ID
Hole
ID

Layer
No.

Stratum
No.

Constituent
No

Colour
No

Main
Colour

Second
Colour

Colour
Modifier

Colour
Structure

7702 B5 4 1 1 1 RED MOTTLED

7702 B5 4 1 1 2 BROWN MOTTLED

7702 _	 B5 4 2 1 1 BROWN

Table 6.1 - Example Data Tables for storing parsed description information
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The structured representation of soil and rock descriptions consists of four tables: strt

- stratum, stst - stratum structure, cnst - constituent and ctcl - colour. This is because

descriptions of layers may contain more than one stratum (soil or rock), for example

SANDSTONE interbedded with SILTSTONE or CLAY with pockets of SAND. In these

examples two distinct strata are present within the layer, yet they cannot be

distinguished as separate layers (a layer being defined by depth and thickness).

Therefore the representation scheme allows for the possibility of multiple strata

within a layer (identified by strata number, strt_no), with the relationships between

the strata being stored in the Stratum structure, stst table. In the first example given

above, the term interbedded would describe both the strata SANDSTONE and

SILTSTONE. In the second example the term pockets would describe the SAND

while CLA Y would be described as dominant.

Stratum represents the whole stratum eg Silty sandy CLAY, whereas Constituent

indicates the constituents combining to make up the stratum eg silt, sand, clay etc. In

the Stratum table, information which relates to the whole stratum is stored such as

Moisture condition, Consistency or Weathering, and the dominant constituent is also

included. In the constituent table (cnst) information which relates to individual

constituents is stored. Using the scheme identified by Toll et al, 1991, the amount of

each constituent is as identified as Main if the constituent is dominant (SILT etc.), or

as Minor (Slightly silty etc.), Secondary (Silty etc.), or Major (Very silty etc.) for the

lesser constituents. This scheme can also be used to represent descriptions which are

not those recommended by BS 5930, but which are still in use, such as with some ...,

with a little ... etc.

Since it is sometimes possible for detailed information on Grading, Shape and

Texture to relate to a particular constituent, rather than the stratum as a whole (eg

CLAY with a little black subrounded coarse gravel where subrounded and coarse

refer to the lesser constituent, gravel) this information is stored in the Constituent
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table, rather than at the Stratum level. Colour can also relate to the individual

constituents, rather than to the stratum as a whole (as when the lesser constituent

gravel is described as black in the example above). Colour is represented as Main

colour, Secondary Colour and Modifier. Since there can be multiple colour

descriptors for a constituent a separate Colour table is used to handle this level of

complexity, attached at Constituent level.

6.3.2 Geotechnical Test Data

Insitu or laboratory tests are linked to the Hole table as shown in Figure 6.1. Insitu

tests can be identified directly from the depth at which they were carried out.

Laboratory tests are carried out on samples. Information on samples is stored in the

Sample (samp), and Sample detail (spdt) tables. Test results are identified by proj_id

and hole _id but are not attached to a particular layer. This is because the test

information will often be used in determining the layer boundaries.

Between the sample table and the test tables there are two additional tables, isrf -

insitu test reference, and lbrf, laboratory test reference which are shown in Tables 6.2

and 6.3. Due to the methodology of the PROKAPPA Data Access link, these tables

are required to ensure a smooth data transfer. They record which tests have been

carried out, keyed as shown in the Tables 6.2 and 6.3. They act as an additional

indexing mechanism to extract the specific test data and are automatically generated

using simple SQL routines. They contain the test code of whatever tests have been

carried out on a particular layer - they are in effect a summary table. When data

needs to be extracted, they ensure that only two tables need to be accessed to ensure

that all the relevant data can be retrieved. These tables are additional to the AGS

standard and are a result of the combination of the GeoTec database with SIGMA.

The table tsrf, lightly shaded in Figure 6.1, contains reference data for all the

different tests stored in the database. This table is shown without links to any other,
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as its contents may be accessed directly or by several of the tables in the data

structure.

isrf
Field
Name

Field Type Field Description Remarks

proj_id varchar(10) Project / Site Investigation Code K
hole id_ varchar(10) Borehole! Trial Pit Code K
test_top f4 Depth to top of test K
test_code varchar(20) Code of test used

Table 6.2 - In situ test reference table

lbrf
Field
Name

Field Type Field Description Remarks

proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
samp_ref i2 Sample reference number K
spec_ref i2 Specimin reference number K
test code varchar(20) Test code

Table 6.3 - Laboratory test reference table

Laboratory test information can relate to different degrees of sub-division of samples.

A sample is usually sub-divided in order to carry out different tests. For compatibility

with AGS, this first sub-division of a sample is called a specimen. In some cases, the

location of a specimen within a sample may be significant, for example, if the

sample crosses a stratum or layer boundary. For this reason, a Sample Detail table,

spdt, is provided for identifying the location relative to the sample top. A comments

field is also provided, for recording any peculiarities which are not true for the

sample as a whole.
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Triaxial (trig) table: Level 1
Project

ID
Hole ID Sample

Ref.
Specimen

Ref.
Specimen
Condition

Cohesion

7702 B5 12c 2 35
7702 B5 12c 2 4

Triaxial (trig) table: Level 1(cont)
Angle of
friction

Undrained
Shear Strength

Property
code

Remarks
(rem)

Test
code

UPI TRIQU
27 EPI TRIID

Triaxial (trix) table: Level 2
Project

ID
Hole

ID
Sample

Ref.
Specimen

Ref.
Test
Ref.

Cell
pressure

Deviator
stress

7702 B5 12c 2 12/22 100 275
7702 B5 12c 2 12/23 100 277
7702 B5 12c 2 12/24 100 279

Triaxial (trix) table: Level 2 (cont)
Strain Property

code
Moisture
content

Remarks
(_rem)

10 UPI 25.3 B512c0-34
10.5 UPI 25.3 B512c0-34

11 UPI 25.3 B512c0-34

Table 6.4 Example Test Tables showing multi level structure

For some tests (eg triaxial) the specimen is further divided into sub-specimens, each

of which is tested in order to produce an interpreted result for the specimen as a

whole (for the tria)dal test the interpreted result would be c and 4)). However, it is

also important that the results obtained for the sub-specimens are also stored. This

allows the individual results to be re-examined by the geotechnical specialist, if there

is some doubt about the interpretation. In the case of the triaxial test the individual

results would be shear strengths measured at different cell pressures. Table 64

shows how this multi-level test storage operates - not all the fields in the data table

are shown to aid clear illustration_

There is also a further level of test data, which are the 'raw data from which the

results on specimens, or sub-specimens, were obtained. The triaxial test version of

this would be the data points defining the stress-strain curve; for the moisture content

test, it would consist of the weight of the sample, wet and dry and the tin weight.
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While it would be possible to define data structures for storing this level of detail, it

is questionable whether this is worth-while. Different companies will have differing

views on what needs to be stored at this level; some might even question the need for

this raw data to be included at all in a structured database. However, with the

development of integrated data management systems, it would make sense for the

data management system to have access to this raw data, particularly since the

widespread use of laboratory data acquisition systems will mean that a large part of

the data will already be stored in computer files. To provide this facility, the database

system developed can store pointers to files containing the raw data. These files do

not need to be structured; they can be simple ASCII files, formatted Document files

or Picture files. The _rem field in the appropriate test table has been allocated for

this usage. If no raw data exists for ASCII storage, this field merely contains

comment and remarks on the test, up to 250 characters. However, if raw data is

available, this field stores the pointer and full path name of the relevant file or files.

The results from laboratory tests can therefore be stored at different levels. The top

level is a result which applies to a specimen and is identified by Specimen Number,

spdt ref For the simple tests, such as moisture content, this is all that is required.

The next level is a result which applies to a sub-specimen, and is identified by a test

or stage number, _tesn (as per AGS). Pointers to files containing the raw data can be

provided at either level. This provides the possibility of storing Level 3 data in an

unstructured form. Doing this would mean that the Level 3 data would be available

for reading by the geotechnical specialist, but would not be suitable for access by the

KBS.

100



Source class
objects

A

External
data

Mapper instance
objects

Domain
objects

4

101

6.4 The SIGMA - Geotec Connection

The designation of the SIGMA/Geotec connection as tightly coupled, see section

2.8.2.2, allowed for the independent design of both systems. However, the structure

of the actual connection between the two systems has been dictated by the design of

the PROKAPPA Data Access System (DAS), a PROKAPPA provided package. The

DAS, retrieves data from external data sources and places it into unique named

PROKAPPA objects; it can also place data from these objects back into the external

data sources. To do this, the DAS needs to know how to map the external data into

and out of PROKAPPA objects. There are four components in this mapping process,

as shown in Figure 6.3.

Figure 6.3 - PROKAPPA Data Access System object relations

1. The external data is the data stored in the relational database or flat file.

2. The domain objects are the objects that contain copies of portions of the external

data.

3. The mapper instance objects, contained in the mapper application, are objects that

describe the mapping between the external data source and the domain objects.

4. The Sources application contains the class objects for the instances in the mapper

application.



6.4.1 UID Nomenclature

PRO1CAPPA allows many applications to be active at one time, so if the DAS

application is live, then the objects can be interrogated and data transfer initiated. To

ensure data integrity, a concept known as Unique Identifier, UID is employed. This is

a PROKAPPA methodology that ensure that whenever a data instance is imported

into, or being prepared for export from, a database, each instance has a unique name.

All PROKAPPA objects must have a unique name and the UID concept utilises the

primary keys in the relational data structure to ensure this singularity. This can lead

to lengthy nomenclature of instances where tables have lengthy keys, take for

example the sample constituent table shown in Table 6.5.

Field Values Keys

proj_id 7702 K
holeid B5 K
lay_no 3 K
strt_no 1 K
cons_no 1 K
cons_cons CLAY
cons_amnt MAIN
cons grad
cons_shpe
cons tex

Table 6.5 - Sample constituent table

The UID nomenclature for this particular instance, which is in fact the first row from

the previous Table 6.1, is cnst("7702","B5",3,1,1). However, with the non-

deterministic nature of ProTalk complex names of this nature do not present a

problem. If the constituent instances need to be processed in any way, the command

all instanceof cnst gathers the names of all the current instances of the object cnst into

a list. This list may then be processed one instance at a time using the structure

for ?inst inlist <list of constituent instances>
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whereby the variable ?inst is bound to each member of the list in turn, so removing

the requirement for the system to know the name specifically.

6.4.2 Mapping the GeoTec database

In designing the particular mapping for the Geotec database, each individual table of

the database is defined for PROICAPPA in terms of its field formats and contents,

keys and overall structure. This is accomplished with the aid of a specific set of

developers tools which form part of the PROKAPPA DAS. This windows based

interface may be augmented if required by the direct use of the objects and methods in

the Sources application. There are several data conversion constructs that the DAS is

familiar with. However others, specifically date mapping, have to be coded by the

developer. Once this data is knOwn, PROKAPPA will attempt to construct both the

domain and mapping applications, enabling the mapping to be tested.

The objects and instances created in the mapping application take the form of one

object for each table in the database and a group of instances containing row and

column data for each table, as shown in Figure 6.4.

Figure 6.4 - Illustration of INGRES to ProKappa representation
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The mapping and domain applications are shown diagramatically in Figure 6.5. In

addition, instances are created whenever a Geotec to SIGMA transaction is carried

out. The system defined slots on the mapping objects allow for a full and thorough

examination and processing of the external data. It is with this functionality that the

DAS provides a tightly coupled interface.

The mapping instances contain the full description of the fields contained within the

specific tables, along with their format and other key data.

MAPPER APPLICATION

INGRES

i

Objects.	 One class for each table in the
system slots to define behaviour.Domain	 classes

consulting these objects.

Mapper instances. Two instances per data field
plus	 one	 instance	 created	 for	 every	 data
transaction. On completion of database session,
temporary instances deleted.

I	 I

I	 I Mapper Source

L	 I	 	 	 database, with
are produced by

I	 I

I	 I

4 

DOMAIN APPLICATION

One per data table, one slot per data field.	 Two
fields to locate slot maps and produce instances

Domain instances.	 One instance per data table
record	 (tuple).	 MD	 nomenclature,	 selection
criteria help in mapper class

I	 I	 Domain classes.
additional system

1	 iI	 I:<

Figure 6.5 Diagrammatic representation of mapping and domain applications
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The objects contained in the domain application are in essence replicas of the tables in

the Geotec database. They are constructed from data held in the mapping application

and on data retrieval, instances are created of these objects which represent specific

rows from the relevant tables. The data may be held within the domain application or

moved/copied elsewhere to be processed. However, if data is to be placed into the

Geotec database, this can only be achieved from the domain application.

6.4.3 Creating SQL communications with ProKappa

Once developed, communication with the Geotec database is via standard SQL

commands. The DAS has the ability to create its own SQL syntax from commands

issued through the various constructs within the system, or to allow enhancement with

additional user defined syntax. SIGMA creates this additional SQL which is utilised

to specify exactly which records are required to be imported, updated or retrieved.

As mentioned in section 6.4.2, the mapping domain contains source objects for each

of the data tables to be mapped across into ProKappa. There are 38 system (that is the

Data Access System) defined slots on each of these class objects which give the DAS

its functionality, shown in Appendix 7. Of these slots the majority have system

defined values that are altered either on initialisation of the system or during its

operation. The user, or indeed the system developer, has little control over these slot

values other than those slots which are required to be directly manipulated during

routine operation of the system. The slot Additional WhereString is one such case in

point. The DAS checks this slot value whenever a database access is to be performed.

If a value is present, the value is incorporated into the DAS formulated SQL syntax in

the form of an addition to the where clause of the SQL statement (Section 4.5.2).
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This methodology is widely used within SIGMA. The user selects the appropriate

action/selection from a menu and, on a database access being required, the system will

construct the relevant SQL. The syntax for the Additional WhereSlot is of the form

field = value or field in (list of values)

so the only knowledge required by SIGMA is the name of the appropriate data field

that corresponds to the user selection. Several fields may be required to be

incorporated into one AdditionalWhereString due to the complex nomenclature of

the UID methodology. Once this SQL has been formulated it is assigned to the value

of the AdditionalWhereString of the respective source object. This removes the user

having to construct any SQL of their own and allows the system to handle all the data

management with the DBMS.

6.5 Conclusions

Data structures have been developed for storing all aspects of a ground investigation

and have been implemented as a geoteclmical database, GeoTec, which forms the core

of the Knowledge Based System SIGMA. The database design has been conducted

within the framework of the AGS standard, complemented by the addition of

structures to allow for storage of parsed soil/rock description data, multi-level test

storage, which could include pictures or document files. The database has been

designed using the relational data model and implemented using the INGRES

Relational Database Management System.

The connection between the GeoTec database and SIGMA utilises an object based

mapping system. This system means that the data transfer operates in the same object

oriented manner as the majority of SIGMA subsystems ensuring a continuity across

the system.
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Chapter 7

Data Handling in SIGMA

7.1 Introduction

To fully utilise the potential of the centralised store of geotechnical information, data

handling subroutines have been incorporated into SIGMA. These routines allow SIGMA

to parse soil descriptions, interface with the GeoTec database, import data from AGS

standard files and cross check data.

A soil description parser has been implemented, based on BS 5930 (1981) and the soil

representation scheme suggested by Toll et al (1991). The parser processes a text sting

containing the full soil description and breaks it down into individual components. It is

capable of transferring data to the GeoTec database, incorporates exception handling (i.e.

it has a method for handling words it does not recognise) and can be simply enhanced. It

operates on a sequential two stage basis and has been designed in a modular manner using

the object oriented functionality of the PROKAPPA environment.

Interfaces based on the PROKAPPA dialog box system have been implemented to

provide access to the GeoTec database from the SIGMA environment. Data may be

viewed, updated or deleted through these interfaces. Data may be imported into the

GeoTec database via AGS standard files, although a limited amount of pre-processing is

necessary to allow this. The facilities provided with PROKAPPA to read data directly

from file were not sufficient for this task.
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Data checking routines have been implemented which allow data from the GeoTec

database to be imported into an analysis area and values can be cross-checked to ensure

integrity within the system. In addition, parsed soil description data may also be used to

further cross-check the data.

7.2 Necessity of a Parser in a Site Investigation KBS

As mentioned in Chapter 4, to fully utilise all the available information gained in a

ground investigation it was found to be necessary to parse the soil description. A soil

description is carried out by an experienced geotechnical specialist for the purpose of

identifying layers within a borehole in order to facilitate a better understanding of the sub

surface conditions. Individual layers can be recognised within the profile, each defined

by depth and thickness. Engineering descriptions of soils are complex expressions

containing no verbs, only adjectives and nouns. The vocabulary used is theoretically

limited by the appropriate British Standard, BS5930, however in practise these limits

cannot be rigorously enforced. This leads to terms being used in the description that,

whilst commonly in use in the geotechnical field, are not defined by any standard.

The more detailed data the engineer/geologist can record on the appearance, feel and

texture of the layer, the greater the aid to understanding. However, this can lead to a

significant variation in the content of a soil description, for each engineer/geologist has

their own subjective approach to the task. A comparison of borehole logs illustrates this

point, some logs having layer descriptions within two lines whilst other logs have

paragraphs to describe a single layer.
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Obviously, the context of the site investigation is the most important factor in this. Some

layers will necessitate a much lengthier description due to the complex structure of the

strata. However, a degree of subjectivity has to be borne in mind when approaching the

problem of parsing the soil description; the parser must be flexible enough to allow for

this variability in descriptions yet robust enough to withstand day to day usage.

One use of the detailed qualitative information stored within a soil description, is for

borehole interpolation, that is the interpretation between discrete points of sub surface

ground conditions. Layers in neighbouring boreholes have to be compared in order to

know if they comprise a continuation of the same layer. The base level of data that must

be extracted from the description to fulfil this task are the dominant constituent types.

However other detailed data can also be extracted and used to enhance both the

interpolation process and general data integrity. The interpolation process can be

improved by comparing the colour, consistency and structure of the layers (Vaptismas

and Toll, 1993) and so this data needs to be identified within the description. In addition,

qualitative data given within the description can be used to check against laboratory data

to ensure the integrity of the data to be stored in the GeoTec database. For example, if

within the description a layer has been described as stiff and yet the laboratory test results

give the undrained shear strength as 50kPa, then further examination of this sample

would be recommended. It is for these reasons that the decision was made to incorporate

a soil description parser into SIGMA.

The decision to produce a custom built parser was taken for practical and compatibility

reasons. Commercially available parsers which are mainly involved with the parsing of

correctly structured sentences were not very useful as they would have needed major

modifications to handle the problem of parsing a soil description. At the same time their

full functionality would not have been utilised. Also, finding a commercially available
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parser that was capable of being incorporated into the SIGMA environment would have

been difficult. The parser that has been developed for use in the SIGMA project was

based on previous work carried out by Vaptismas (1993) who produced a PC-based

parser for soils descriptions, written in Prolog.

7.3 Design Methodology for Soil Description Parser

In the initial design stages of the parser, several fundamental principles were used to

outline the requirements of the final system: The parser must :

1) Be based upon the relevant British Standard, and be able to be updated along

with that standard.

2) Be able to produce suitable output for transfer to the GeoTec database using

the tightly coupled linkage of the SIGMA environment.

3) Allow simple enhancement for improvement or addition as new geotechnical

terms come into use.

4) Be able to handle terms with which it is unfamiliar, that is exception handling.

5) Be usable in both batch and individual case mode.

In order to achieve these aims, the parser was designed in a modular manner, using the

object-oriented facilities of the PROKAPPA system. The parser's design follows the

fundamentals of a top down recursive parser utilising single token lookahead (Bennett,

1990; Rayward-Smith, 1983), whereby the description is examined one term at a time and

this term is passed to all available comparison functions or clauses. If a term is found to

have matched a particular clause element to a suitable conclusion, the sequence is re-

initiated with the next term in the description.
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However, there are some occasions when a term is a part of a phrase, in which case the

structure of the parser is such that the terms will be extracted until a phrase is fully

identified and any required actions initiated. In the example CLAY with a little sand, the

parser will extract the full phrase with a little and take the appropriate action for

determining a minor constituent. This ability has required a large suite of support

routines for the parser, some of them separate from the comparison clauses themselves.

These support routines allow not only for the differing phraseology within the description

but manage the interface of the parser to both the user and the remainder of the SIGMA

environment.

7.4 Operation of the Soil Description Parser

7.4.1 Output requirements

By making use of the object-oriented facilities of PROKAPPA in both the parsing of the

descriptions and the database transfer, the production of the results of the parsing process

into a suitable form for transfer into the GeoTec database is simplified significantly. As

discussed in Section 6.4.2, the mapping of data to and from the GeoTec database utilises

the Sig93D domain, where class objects of the data tables are present and Sig93M

domain, where control and source classes reside.

To place data into the database, instances have to be created of the relevant classes.

These instances have to be named according to the UID nomenclature (section 6.4.1) and

the appropriate data values assigned. The data values, that is those values that have been

produced as a result of the parsing process, are much easier to assign if the final structure
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of the parsing process is compatible with that of the Sig93D class. Using this criteria as

one of the design principles for the parser (Section 7.3) shifts the emphasis of data

transfer into the main parsing algorithm rather than post processing a solution.

As previously stated in Section 4.5.2.1, the structure of a parsed soils description can be

represented in five data tables, namely: lay - layer, strt - stratum, cnst - constituent, stst -

stratum structure and ctcl - constituent colour, as shown in Figure 7.1.

Depth to Top

Constituent Structure
Amount

constituent stratum
structure

Spacing
Grading Dip

Shape Orientation
Texture Surface

Constituent
Main Colour

Legend	 O.. Contains data

Figure 7.1 - Full detail of storage of parsed soil description

To facilitate the transfer process, the parser has been designed so that it has the same

structure as that of the data tables that will be receiving the parsed soils data. As will be

discussed within the following sections, this has required a very specific methodology to
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be enforced within the parser itself in terms of internal functionality, yet the final

outcome is one that is fully compatible with the GeoTec data structure.

7.4.2 Data Import for parser

The parser operates on the principle that the data to be parsed resides within the GeoTec

database. Data may be imported into the parser either on an individual or batch basis,

however due to the nature of the exception handling routines, see Section 7.4.5, the

actual descriptions are parsed individually.

To import an individual layer into the parser, the investigation id, the borehole number

and the layer number must be entered into the appropriate entry box on the parser dialog

box, Figure 7.2. On pressing the import push button SIGMA produces the relevant text

string which is then passed to the AdditionalWhereString slot of the lay_Source class

object, as previously detailed in Section 6.4. A initiation signal is then sent to the Get!

slot of the same source object, lay_Source, which initiates the data import procedure.

On completion of this procedure the appropriate instance is created in the Sig93D

domain. This is the manner in which all ProKappa data import transactions are carried

out. Once the instance has been created in the Sig93D domain its name is placed in the

'Available for parsing' list box in the parsing dialog box.
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Figure 7.2 - Parser Interface

If the user wishes to import more than one layer description, that is a batch of

descriptions, this may be accomplished using the same interface. If the user wished to

parse all the descriptions of a particular borehole, then the layer entry box is simply left

blank and the system will import all the layers. Selecting certain layers in a particular

borehole may be accomplished by listing those layers required by number in the layer

entry box separated by commas. The same method can be used for boreholes by listing

those boreholes required in a list separated by commas in the borehole entry box. This is

illustrated in Figure 7.3. When the appropriate layer instances have been imported into

the Sig93D domain their names are placed in the 'Available for parsing' list box.
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Investigation No.

Borehole No.

Layer No.

1137B

1

1

Investigation No.

Borehole No.

Layer No.

1137B

1

Result:

Imports individual layer

Result:

Imports all layers from specified
borehole

Investigation No.

Borehole No.

Layer No.

1137B

12,13,16

1,2,3

Result:

Imports layers 1,2 and 3 from the
specified boreholes

Figure 7.3 - Illustration of batch layer selection for parser module

Once all the names have been placed in the 'Available for parsing' list box, the user may

highlight the instance to be parsed. The instances are listed in order of the HID

nomenclature, allowing the user to identify which layer the particular instances

corresponds to.

7.4.3 Parser Operation

In order to simply describe the operation of the parser, its basic facets have been

represented in a flow diagram, Figure 7.4.
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ON USER COMMAND, DATA
TRANSFERRED FROM DATA

DOMAIN INTO GEOTEC

EXCEPTION
REPORTING

Figure 7.4 - Flow chart of the soil description parser

On initiation of the parsing process by the user, the system ensures that both data transfer

application domains are cleared of previous data. SIG93D, the database mapping domain

area, has all the instances of any previous data import cleared from those objects used in

the parsing routines. Other objects do not have their instances removed as they may be

required by other ongoing SIGMA routines. Sig93M, the database mapping domain, has

all the instances from a connection to database session automatically deleted when that

session is closed by the user. All objects that are present in PSD, the parser's working
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area or domain (Section 3.5.3.1) are deleted in order to commence a new parsing batch,

except for the top-level objects. This deletion is carried out automatically to ensure that

starting point for the parsing routines is always consistent.

The final stage of the initialisation process is the setting of various global variables to

their initial state and the placing of a copy of the description into the appropriate slot on

the top level object SoilDes. In the context of this object-oriented environment, the

phrase global variables refers to slots on a calculation object, Kalker, that are addressable

by all objects, external sources, user and system defined routines. Kalker contains

counter slots, flags, temporary variables and lists that are utilised in the parsing algorithm.

The cycle of parsing involves simple sequential extraction, using the clause extract, and

the passing of the appropriate term to all the clauses in the parsing system. The

methodology of the extract clause is to move through the description locating the next

blank space. The manner in which the clauses are acquired by the parser is covered in

Section 7.4.4.1, that is by a non-deterministic call to the subclasses of the object parser.

If a term is encountered that is understood by the parser yet is incomplete by itself, for

example the modifier moderately, this is stored on the Kalker and the next term in the

description is extracted.

As the parsing progresses, an intermediate parsed structure (Section 7.4.6) is built up

until the extraction routines arrive at the end of the description. Exception routines will

then allow the user to manually incorporate any data unknown to the parser (Section

7.4.5). When this task is completed, the parser then converts the intermediate objects

into those that are suitable for transfer in to the database domain, SIG93D, whilst

deleting the intermediate object hierarchy. As stated in section 7.4.1, this final stage
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GradingI Parser 

Texture

object hierarchy has the same structure as the data tables within GeoTec so aiding the

transfer process.

7.4.4 Parser Clauses

7.4.4.1 Object Oriented functionality of the Parser Clauses

Each comparison clause, or function, is stored in the slot parser _clause of an object of the

same name, all objects being subclasses of the object parser, see Figure 7.5. This allows

parsing to be initiated using a non-deterministic call to parser, enabling all the available

sub-classes to be used without their names having to be known.

Shape

Distribution

Consistency

parser_clause! Comparisonlist

consis.parser_clause "soft","stiff',"dense","firm","loose"

Figure 7.5 - Example of the object hierarchy for the parser

The non-deterministic call gathers into a symbolic list all parsers' subclasses, thereby

allowing this list to be processed by extracting one symbol at a time. This allows for

generic growth of the parser to be managed without the addition of complex ProTalk

programme code, a new subclass object is simply added to parser and the new

comparison clause will then be consulted on each new parse. Also this structure allows
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for simple addition of vocabulary to an existing parser clause (Section 7.4.4.2). As

mentioned earlier in this section, PROKAPPA's object hierarchies are intensively used in

the actual representation of the description during the parsing processes and the transfer

to the GeoTec database.

The syntax of a soil description presents an interesting grammatical problem, in that the

structure possesses certain rules yet the order of individual terms tends to the

unsystematic. The sequential parsing structure described in section 7.3 in conjunction

with the object oriented approach allows this variability to be easily managed. The

variation in which the terms can occur is shown in Figure 7.6.

Figure 7.6 - Variation in placement of terms in soil description

The actual positioning of the term moist is of no consequence to the parser as the term

will be passed to the appropriate clause wherever in the syntax it is met. The soil type

itself is broken down into the individual components (Toll et al, 1991), each identified as

an amount as shown in Table 7.1. In the example shown in Figure 7.6 the soil type silty

CLA Y would be broken down into CLAY- main: silt - secondary.
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Soil Type, descriptive term Amount Example

Main CLAY
very Major very clayey

Y Secondary clayey
slightly Minor slightly clayey

Table 7.1 - Soil amount representation scheme

PROKAPPA's object oriented functionality also proves useful in the building up of the

final structure of the parsed description. As data values are inherited down an object

hierarchy, data pertaining to classes lower in the structure, for example at the constituent

colour level, is automatically assigned during the parsing process, see section 7.4.4.4.

This ensures both data continuity and the correct naming of the transfer instances.

7.4.4.2 Clause Structure

Where possible a standard form has been used for the clauses of the parser, as illustrated

in Figure 7.7, and an example clause is shown in Figure 7.18.

This standard form can be seen to consist of five distinct phases. When a new term is

passed to a clause it must be ascertained whether or not a match has already been made.

This is accomplished using the Kalker.Hit notation (Section 7.4.5), whereby if a previous

clause has matched a term, this variable will be set as a flag. This reduces the processing

time of one parsing sweep, as the remainder of the clauses can be ignored. If this initial

test proves negative then flow through the clause continues with the generation of the list

of comparison items. This data is held in the slot comparison_list on the appropriate

parser subclass object, in the form of a list of allowable terms for a particular clause, as

shown previously in Figure 7.5.
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Control passes to clause
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clause

Check for previous
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SIJCCES5

Generate comparison
list

SUC=E55

Compare current word
with comparison list

Set and reset
appropriate variables

success

FAII

Figure 7.7 - Program flow through standard parser clause

This allows the data for the comparison to be easily obtainable by the parsing module and

also allows for simple updating of the vocabulary in the list. If another term needs to be

added to the list the user selects the appropriate slot and simply adds the new term. In all

subsequent parsing sweeps, this new term will be included.

One word at a time is extracted from the comparison list and compared with the term that

has been passed to the parser clause. If a match is found then the appropriate temporary

object (Section 7.4.6) is set to this value, in addition to the value of Kalker.ModKalk.

This ModKalk variable is initialised by the call to the function modify() which ascertains

if the term being processed is a modifier, for example very. The modifier object, a

subclass of parser, contains slots for each term that may have a modifier present.

Modify() checks the relevant modifier slot to check if the term is a valid modifier, and if

it is sets the value of Kalker.ModKalk to that modifier value. The constituent functions
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ensure that no confusion arises with the same terms when used to describe a constituent

amount, as in Table 7.1. The final action of the function is to set the Kalker.Hit variable

to ensure that no more processing is carried out on this particular term.

method shape.parser_clause!(?word, ?ls)

if Kalker.hit = "hit";
then fail;
?word2 = ConvertToString(modify(?self, ?word, ?Is));
if ListLength(FindListElmt(all shape.comparison_list, ?word2)) > 0;

Kalker. Shape = AppendStrings(Kalker.ModKalk, ?word2);
Kalker.ModKalk = ";
Kalker.hit = "hit";

Figure 7.8 Example of parser clause

7.4.4.3 Rules / ProTalk

The rules that govern the syntax of the soil description can generally be expressed in the

form of if... then clauses, as shown in Figure 7.9.

if last letter of word is y
AND
(word - last letter) inlist (silt, clay, sand, gravel, cobble, boulder)
AND
modifier very not encountered
THEN
constituent amount equals secondary

Figure 7.9 Example of general rule implemented in the parser
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SELECT

CASE : last letter of word is y
CASE: last 2 letters of word is ey
CASE: last 2 letters of word is ly

AND
or {(word - last letter) Wirt (silt, clay, sand, gravel, cobble,

boulder);
(word - 2 last letters) inlist (silt, clay, sand, gravel, cobble,

boulder);)
AND
modifier very not encountered
THEN

constituent amount equals secondary

In addition, this rule can provide a good example of the flexibility required from the

parser, in that two of the secondary soil types do not conform with this rule, namely

clayey and gravelly. It is in situations such as this that the versatility of the ProTalk

language allows for constructs to be implemented to enhance this simple rule to allow all

the terms to be compared within one clause (Figure 7.10). The inclusion of the additional

check for the modifier very is to ensure that there is no confusion with the soil amount

major.

Figure 7.10 - Example of extended general parser clause.

7.4.4.4 Dominant Constituent Type

As discussed in the previous section, the parser is based on the descriptive terms laid out

in BS5930 in conjunction with the representation scheme put forward by Toll et al,

1991, by which each constituent type is associated with an amount, see Table 7.1. This

methodology for identifying the correct constituent type is very important to the

operation of the parser as it allows the dominant constituent type to be separated from
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the other constituents. It is this main or dominant constituent to which the preceding

qualitative terms will apply and therefore non-standard clauses have been written to

ensure their correct handling.

The identification of soil types and their amounts is carried out in a three stage process.

Firstly, the word being parsed is passed to the clause soil_type which tests whether the

term is a modifier for soil types, for example slightly. If this test is positive, the next

word is extracted and immediately passed to the function sec_st, whose purpose is to

identify the actual soil type, that is silty, clayey etc. If the test for a modifier is negative,

the initial term itself is tested by sec_st, and failing that main_st, to determine if it is

actually a dominant soil type.

sec st has a similar basic structure to the example shown in Figure 7.10. Obviously the

example is significantly simplified to aid the illustration. Both sec_st and main_st

include routines to create new objects within the temporary object hierarchy as a positive

result proves the existence of either a new stratum (main_st) or a new constituent

(sec st) within the description. There are other stratum related structural terms that will

also necessitate the creation of new objects, interbedded for example (Section 7.4.6).

The new objects are created as subclasses of their superclass, inheriting those slots

already defined and being given new slots as required. This allows for the passing down

of the common data, for example investigation, borehole and layer number at constituent

level and main soil type or amount at lower levels.

7.4.5 Exception Handling

Exception handling, or the ability to deal with unknown terms, is an important facet of

the parser as it allows it to operate within a very flexible environment. The exception

handling currently implemented within the parser can accommodate two eventualities,
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that is a mis-spelt word or one that lies outside of the current vocabulary of the parser.

Within SIGMA both of these occurrences can be managed utilising the same

methodology.

As can be seen from Figure 7.8, the first action of every clause is to check a global

variable Kalker.Hit, which in reality is the slot Hit on the object Kalker. If Kalker.Hit is

set to True, then the clause is immediately exited as the particular term has been

identified. Utilising this principle, if at completion of one parsing sweep Kalker.Hit is

still set to False, or in ProTalk terms Null, then this term is unknown to the parser and

requires exception handling. This term is placed in the Exception Items list box of the

Parser dialog box, Figure 7.2, and the parser continues with the next term.

On completion of the parsing of the entire soil description the user is prompted to deal

with those terms in the exception list. On selecting a term from the exception list box it is

automatically placed in the adjacent entry box, allowing the term to be corrected or

removed. If the term is corrected, due to spelling mistake, the newly corrected term is

replaced into the original layer description and the mis-spelt term removed from the

exception list. If the term is deleted from the entry box it is also deleted from the original

description and the exception list. The user may manually add the term to the comments

slot of the appropriate instance in the final parsed structure or choose to ignore the term

completely.

In either event on choosing the export option, whereby the parsed description is entered

into the database, if the original description has been altered the user is reminded of this

by a warning dialog box. This warning reminds the user that the original description has

been changed and gives the option of updating the original description or leaving it

unchanged. This warning is important in that if data residing in the database is to be
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changed, then it must always be with the consent of the user. SIGMA, as a Decision

Support System, should also act as an assistant to the user and never attempt to take

control.

7.4.6 Construction of the Parsed Structure

Due to the variability in the syntax of the soil description (see sections 3.2 and 7.2) the

parsing takes place in a two stage operation to enable complex descriptions to be broken

down. Firstly, the parsed description is built up into temporary objects, adhering to the

final structure but having a modified slot pattern and nomenclature. This allows for any

variability in the description to be accommodated. As main soil types, constituents and

structures are discovered, the temporary model is translated into a static final structure

with the same hierarchy. In theory, the temporary model could be transposed directly

across to the Sig93D domain, the only area from which data may be transferred to the

database, but this would leave no room for error in the transferring of the data. It is vital

that the data is consistent before transfer, so the final parsed data model resides in the

PSD domain and the transfer to GeoTec takes place as a separate process.

This may at first appear to be over complication, but the constraints of the Data Access

System with the UID methodology (see Section 4.7) require a unique name for each

instance to be imported into the GeoTec database. This unique identifier, UID, is

constructed from the keys of the particular table to which the record is to be added and

due to the complexity of the data structure (Figure 7.1), counters are employed to identify

the specific layer, constituent, colour and structure. To conform with the UID

methodology these counters must be employed as keys to name each instance uniquely.

For example, in site investigation PK11234, a borehole BH907 contains several layers,

layer 3 having the description brownish red becoming red silty CLAY. The colour
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instances of the parsed soil descriptions are named according to the key of csci, the

constituent colour table. The keys for this table are shown in Table 7.2

Field Value colour 1 Value colour 2

proj_id PK11234 PK11234
holeid BH907 BH907
lay_no 3 3
strt_no 1 1
cons_no 2 2
ctcl_clno 1 2
ctcl_mcl red red
ctcl scl brown
ctcl_strc top base

Table 7.2 - Make up of key for constituent colour table

and the associated UID's for this example would be Colour 1 instance UID =

cscl("PK/1234", "BH907", 3,1,2,1), Colour 2 instance UID = cscl("PK11234", "BH907",

3,1,2,2). As can be seen, if several constituent classes and sub classes are present in a

particular description, the direct naming of instances becomes complex. The use of an

intermediate or temporary object hierarchy to store the developing parsed description

allows the completed description to be easily converted into a form suitable for transfer.

It enables the model to have a dynamic quality, so that if several strata are present within

the one layer, each with several constituents and associated colours and structures, the

model is able to store this data in temporary objects until the dominant constituent is

located. The only other method of adapting to the complex nature of the description

would be to store all the associated data on the one calculation object which could

become unfeasibly large with complex descriptions. This methodology allows for both

simple and complex descriptions to be accommodated within the same algorithm.
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Take for example the layer description red silty CLAY interbedded with sand. Figure

7.11 shows the temporary structure directly before the parsing run.

Figure 7.11 Initial state of parser object hierarchy

Kalker, KalkStrl and KalkColl are the general, structure and colour temporary

variables and SoilDes is the top level object which contains the description to be parsed,

as well as investigation, borehole and layer numbers. The object Stratal exists at this

stage as every description by definition will contain at least one main soil type. The

parser examines the term red, allocates this as a main colour on the KalkColl object and

progresses to the next term silty. Silty is identified as a secondary constituent and as

such is allocated a new class as a subclass of Stratal and named StratalCtl (Figure

7.12).

Figure 7.12 - Parser object hierarchy after identifying one soil constituent
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The parser now examines the next term which is identified as the main soil type CLAY.

A new subclass of Strata!, StratalCt2, is created and allocated the soil amount to be

main and the soil type to be clay, Figure 7.13. A subclass of this object is also created,

StratalCt2C1, to contain the colour details for the main soil type, that is the main

colour red, which has been held up till now in the temporary variable KalkColl.

Figure 7.13 - Parser object hierarchy after identifying main soil type

The parser then extracts the next term and identifies it as interbedded which signals that

Stratal is now complete and that a new class Strata2 is to be created as a subclass of

SoilDes, Figure 7.14.

Figure 7.14 - Parser object hierarchy after identifying main soil type
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The Stratal hierarchy is now complete and all the Kalker variables are reset, apart from

the soil counter which is incremented. The parser, still within the interbedded clause,

extracts the next term which is identified as with, which is within the limited syntax

expected to follow in the phraseology of interbedded. Accordingly the parser extracts

the next term and identifies this as a main soil type, SAND, and creates the appropriate

subclass of Strata2, Strata2Ctl and sets the appropriate values of soil amount and soil

type. On attempting to extract the next term the parser is presented with an empty string

signifying the end of the description. The calculation objects are then discarded and a

new subclass of SoilDes created, Str1/2, which contains the interbedded term and is in

effect the mapping for the data table stst, stratum structure. The final structure ready for

any exception processing and transfer to the database via Sig93D is shown in Figure

7.15

Figure 7.15 - Final parser object hierarchy

The naming of the objects in this structure, for example StratalCt2C1, are purely for

ease of recognition and construction. The non-deterministic nature of ProTalk means

that the system does not need to know the names of the particular subclasses and the

UID methodology necessitates renaming of the instances when they are transposed into

Sig93D, section 6.4.1.
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7.5 Interfacing to the GeoTec database with SIGMA

The ability to treat the GeoTec database as a standalone database within the confines of

the tightly coupled enhanced expert system (section 4.5.1), is important to the concept of

SIGMA. For this reason there are direct interfaces that allow manipulation of GeoTec

entities via SIGMA. These interfaces allow for the manual entry of data into any of

GeoTec's tables as well as the ability to update and delete. These interfaces utilise the

PROKAPPA Dialog Box functions that are provided with the development environment.

It would be possible for a user to use these routines to fully populate the database but the

process would be very time consuming and inefficient. The ability to enter the data from

AGS format files is described later would be used for entering the majority of the data.

Therefore these direct entry routines would be used for the addition of supplementary

details such as test results, the updating of data and manual browsing of records by the

user. An experienced user may wish to have direct access to the data, rather than relying

entirely on SIGMA for interpretation.

Each table has an interface through SIGMA, examples of which are shown in Appendix

4. As mentioned in Section 3.3.3.3, the dialog boxes and their controls supplied through

DialogBoxApp provide the full functionality required to build and operate the interfaces.

It utilises the concept that a dialog box owns the controls that are its constituent

elements. The dialog box itself and all the controls are instances of the blueprint classes

that exist in DialogBoxApp. The interfaces can either be constructed programatically

when required or permanently using the Interface Workbench, a production tool

provided in the development environment. Initially the programmatic approach was

used. However this method whilst providing the flexibility for SIGMA itself to generate

its interfaces as necessary, provided cumbersome in use. The programming code

required to produce the dialog boxes and their controls, to initiate the various settings
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and provide the behaviour was lengthy and proved very slow in operation. A discussion

of interface techniques is included in Chapter 2.

Using the interface workbench provided the more suitable solution, enabling rapid

production of the interfaces and due to their permanent nature the speed of the system

was enhanced. In addition, general behavioural routines were able to be written which

further increased their efficiency. This approach does however lead to the production of

many instances which are an additional load to the overall performance of SIGMA. As

previously mentioned, the PROKAPPA object modeller is its most efficient asset and

theoretically unaffected by the number of objects associated with an application.

However, in a system the size of SIGMA this can be seen to be not wholly the case, with

performance degradation appearing as the object bases become massive. This subject

will be discussed in further detail in Chapter 9.

7.6 AGS Data Entry

One of the main reasons for the utilisation of the AGS Electronic Data Transfer standard

(AGS, 1992) was to enable the inclusion of that data into the GeoTec database. This

inclusion enables data from many sites to be easily and simply inserted into the database

and thereby accessible to SIGMA. The larger the quantity of data available and the ease

with which this can be incorporated into the system for analysis, the more meaningful and

useful results can be drawn, see Section 3.

An example of the AGS format is given in Figure 7.16. The use of headers and format

specifiers allows not only for the electronic transfer between information systems but also

for ease of reading by an engineer. This is important as it does not restrict this format
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purely to computer systems, an often encountered side-effect of implementing

information technology in new areas.

"**PROJ"
"*PROLID","*PROJ_NAME","*PROJ_CLNT"
"123/abc","Towy Valley Cyder Company","A.Client and Partners"

"**HOLE"
"*HOLEJD","*HOLE_TYPE","*HOLEHOLE NATE","*HOLE NATN",
"*HOLE_GL","*HOLE_FDEP","*HOLE_STAR","*HOLE_LOG"
"501",5",5542937221884","91.90730.6","","A.0."

"**GEOL"
"*HOLE_ID","*GEOL_TOP","*GEOL_BASE","*GEOL_DESC"
"501","0.0","14.1","Very stiff brown slightly sandy CLAY with extremely closely
"<CONT>",",","spaced fissures"

Figure 7.16 - Example of AGS Data File

There are several points to note with regards to the AGS format, namely:

1) Each data group, or table, has the format specifier ** and is followed by an

ordered list of data fields, for which the format specifier is *, and their associated data

values.

2) If no data is provided for a particular item, a blank set of quotation marks is

substituted. This reduces the potential for incorrect data reading as all data values have

an associated value, even if that value is Null.
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3) If a data value is longer than the specified length of the ASCII file line, a

continuation symbol "<CONT" is used to indicate that the data on the next line is

merely an addition to the preceding. Again, these format specifiers allow the extraction

routines to be easily automated.

4) The field types of all the data values, or fields, are given as character strings,

being enclosed in double quotation marks. This will necessarily entail data conversion

routines to be either written by pre-processing software or routines inherent within the

RDBMS. Data conversion is an issue which can present problems in the transfer of data

between database systems, and is traditionally an area where standards tend to have

subtle differences. With data transfer between PC based systems this is not particularly

a problem as data types are dealt with in a simpler manner and in some cases are purely

text based. However with larger PC and workstation based RDBMSs, very careful

attention must be paid to the types of data being converted otherwise anomalies may

occur. The use of text strings is the most flexible way of approaching the problem.

However the onus is placed on the receiver of the data to process the incoming data

accordingly. This does require some pre-processing on behalf of the receiver.

Whilst the structure of the GeoTec database has been based on the AGS format, there are

differences, for example in table names and the inclusion of parsed soils data. These

differences, along with basic data processing requirements, lead to a requirement for pre-

processing of the data before entry into the GeoTec database. Due to the nature of these

pre-processing routines, a procedural language like C would be used to ensure the most

efficient result.

PROKAPPA's Data Access System, DAS, has a flat file transfer option, but in practise

this was found to be only suitable for writing data to a file. On data import, or reading a
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flat file, the software is not flexible enough to allow the AGS file to be read even with

extensive pre-processing. The DAS requires that the same data resides in the same

column throughout the file; the only manner in which the data transfer could be utilised

throughout the DAS is by sub-dividing each AGS file into several table files, a clumsy

and impractical approach. Prototype programs have been written which have read data

direct into the GeoTec database via pre-processed AGS format files. These routines

utilise the ability of INGRES to read data into specified tables from ASCII files.

7.7 Data checking within SIGMA

Site investigations by their very nature produce a wealth of information. It is the task of

the geotechnical specialist to organise and analyse this data in order to make meaningful

and reasoned decisions. The advantages of a centralised data store have been mentioned

previously (Section 4.2) as a method of increasing the efficiency and minimising the

possibility of inaccuracies of data management. When this data is to be used for

decision making it is important that the data is consistent, that there is no conflicting

data, for this may lead to erroneous or ambiguous results.

To this end SIGMA has a data checking module specifically designed for this purpose,

allowing the user to select specific borehole records, import them into an assessment

area and perform consistency checks. The consistency checks currently take the form of

simple rule based comparisons whereby values from a test are compared with values

gained from other appropriate tests. Also it is proposed that the results of the parsed soil

descriptions, qualitative data, can be used to check against quantitative data from tests.

Although this type of comparison has less significance than direct test to test comparison

they are still valid as an aid to the geotechnical specialist. The checks that can currently
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be carried out are of a limited nature, merely demonstrating the functionality of such a

system

When the user chooses the data checking option from the data handling menu, a dialog

box requests the identification of the borehole and layer to be checked. Presently layers

are checked individually, but it would be only a small modification to implement batch

processing for boreholes. Once the process has been initiated, the data checking module

extracts all the available details from the GeoTec database that correspond to the

borehole layer selected. This is enabled by the use of the two test reference tables, lbrf

and isrf following the procedure outlined in section 6.3.2. The data checking module

consults these tables to determine all the tests that have been carried out on the particular

borehole layer and the respective table names.

Once the relevant data has been imported, rulesets are initiated that carry out the relevant

comparisons. Whist PROTALK has an inbuilt rule system, using the fcrule and bcrule

nomenclature, this was ignored in favour of custom written routines. The complication

of the task in hand and the flexibility offered by custom written rulesets meant that they

prove more effective.

Once the relevant test data for the requested layer has been imported, the tests are

grouped and sorted according to their test code. Once the data has been collated into the

appropriate groups, those tests and the number of tests carried out are reported to the

user, as shown in Figure 7.17.
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SIGMA ; . Prototype Data,Pect011i Warfare

Investigation Ho.	 11111

Borehole No.	 18 
	

Layer No.	 18••

Data Import'

Direct_Simple_Shear [2 tests]
Triaxial_CIUC p tests]

Tests:	 Triaxial UU p tests] 
Field Vane Test 4 tests

Check Data I	 Cancel	 Help

Figure 7.17 - Data Checking interface showing grouped tests for selected layer

SIGMA contains the knowledge of which tests produce comparable data, in the form of

the TESTS knowledge base as previously described in section 5.3.2, and applies this

knowledge to the given situation. Tests are assessed for their applicability in measuring

a given parameter and those with similar applicability ratings have their associated

measured parameter value compared. Presently, those tests having an applicability

rating of high and medium (section 5.3.2.1) are compared with one another. User

selection of applicability rating could be implemented allowing the user to decide the

level of checking required for a specific comparison.

Those tests that are deemed suitable are then compared. Where individual tests have

been taken in the specific layer, this value is used for comparison. Where several tests

have been conducted, the values are averaged. The results are then displayed on the

screen in a separate interface, see Figure 7.18. If the user selects one item from the main

list box, all the appropriate test instances and their associated values are displayed in the
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Triaxial_UU Mean=130
Triaxial CIUC Mean=119 
Held Vane Test Mean=134.751

1.1G ivfk* erototYPe ,Data Checkinfl OutPuttintelface

Investigation No. 1111 Borehole No 8 Layer No 6
Parameter - Undrained Shear Strength

Output statistics for
undrained shear strength

(kNArri's2)

Variance highlight (%)	 110

van "1111", "6", 5.5 150 • 11%
ivan("1111", "8", 4.75) 11451 7%
van "1111' 1 , "8", 4.0	 20 10%
ivan("1111", "8", 2.5) [124] 7%

Field Vane

	 I Help	 I
OK	 Descriptive I	 Cancel

lower list box. The data reported in this lower list box are the UID of the actual instance,

the result returned from the test and the percentage variance from the mean. In

practicality. It is the identification of those results that lay significantly away from the

mean that are like to interest the user. These 'rogue' results may indicate an important

variation in a geotechnical property or merely an error. To assist in identifying any

results that may be inconsistent or ambiguous, the system highlights those results that lie

a specified distance from the mean, for that particular test.

Figure 7.18 - Data Checking results interface

By this process any inconsistencies found during the data checking process are brought

to the attention of the user. The user may select the variance to be highlighted in the

lower list box by replacing the default 10% in the appropriate entry box. It is then the
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responsibility of the user to investigate the reasons for this inconsistency and rectify the

situation. The user may decide to accept the inconsistency as being within acceptable

bounds of variability and leave the data unammended. Geotechnical data is by its very

nature variable (Attewell and Farmer, 1976) and it is left to the geotechnical specialist to

judge whether or not a particular parameter variability is acceptable.

Another course of action would be to mark the data as being doubtful and not to be used

in further analysis. It is proposed that the mechanism for this is to use the comments

field on the appropriate data table and associated data instances. A code could be placed

within this slot which could act as a flag for other SIGMA and non-SIGMA routines, the

presence of this flag indicating that the data may be of questionable accuracy. Other

facets of the SIGMA environment, for example the database interfaces, can be used to

investigate these inconsistencies or consult references external to SIGMA. A third

possible course, altering the data, would be a dangerous practise unless the data stored in

the database can be proven to be wrong, for instance if it were the result of a spelling

mistake or some other error in data entry. It is in the identification of these types of

errors that the data checking module is useful, in the role of a secondary checking

facility.

SIGMA will never attempt to change any data in the GeoTec database, a fundamental

principle in its role as a Decision Support System. Any changes that are made are

initiated by the user, SIGMA's role being to bring to the attention of the user any

possible data inconsistencies prior to analysis being carried out utilising this data.

The Ground knowledge base (Giolas, 1994) could also be utilised to cross-check

qualitative data against the parameter being checked. For example, if a layer has an

unchained shear strength of 280 kPa and yet has been described as soft within the
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description of the layer there is an obvious inconsistency. Work is ongoing to

incorporate this level of data checking within the overall environment of SIGMA.

7.8 Conclusions

With the implementation of the parser, SIGMA provides a level of functionality

previously unavailable from other systems in the field, that is the ability to not only

extract the constituent and dominant soil/rock types from a layer description but also

other qualitative data. This additional information may be stored in the GeoTec

database, complementing but not replacing the original text description. Utilising

PROICAPPA's object oriented facilities also allows for simple addition and improvement

of the parser, so adhering to the principle of transparency mentioned in Chapter 2.

The data handling routines mean that the database interfacing can be managed from

within SIGMA's environment, although external access to GeoTec is always available.

These interfaces allow detailed browsing of the data residing in the database. AGS

standard files may be directly entered into GeoTec with some pre-processing.

On systems such as this where the integrity of the data is of such importance, the data

checking routines described give the user the ability to ensure consistency and continuity

of data. The more confidence the user has in the data being used within SIGMA, the

more likely is the acceptance of SIGMA and such tools in the geotechnical workplace.
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Chapter 8

Data Interpretation

8.1 Introduction

Previous chapters have covered the design behind SIGMA and the methodologies

employed to manage site investigation data. This chapter deals with how SIGMA can

provide tools to assist the geoteclmical specialist in interpreting site investigation data.

Utilising the wealth of data that is available from a central database and combining

this with knowledge stored within the Knowledge Based System (KBS) are important

facets in systems such as SIGMA.

The parameter assessment module is an example of how a central database facility can

be put to a practical use for the geotechnical engineer. When operating at the design

stage of a project it is important for the geoteclmical specialist to be able to identify

the value of particular parameters at given locations throughout the site. Using the

parameter assessment module the user may focus in on a particular location and depth

and extract the required parameter data. This data is displayed to the user along with

the associated test code of the tests used to measure the parameter, as well as

indications of the reliability and applicability of these tests. Correlation routines may

be employed to augment the assessment exercise. The section concludes with a

description of the operation of a session with the parameter assessment module.

Borehole interpolation routines have been included to assist the engineer in

understanding the sub surface ground conditions. Previous work in this area is
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described leading to a discussion of the methodology employed by Vaptismas and

Toll (1993). This is followed by an outline of the object oriented approach used to

implement these routines within SIGMA. Examples are given of some of the

dynamic object hierarchies that are used in the analysis of the data followed by a

detailed description of one of the main functions used. The proposed object oriented

methodology for the implementation of the interpretation routines is then discussed

followed with an illustration of a typical session.

8.2 Parameter Assessment with SIGMA

The parameter assessment module in SIGMA provides data and knowledge to the

geotechnical specialist in order to assist in the choice of a value for a particular

parameter to be used for design purposes. On some occasions the parameter required

may have been measured with a variety of different tests. On others it may be that no

direct measurements have been made. In this situation an indication of the parameter

value may be assessed from other information. SIGMA provides three levels of

parameter assessment (Toll and Oliver, 1993):

1) From direct measurements of the parameter

2) From correlations with other test results

3) From the engineering description of the ground

If the parameter has been directly measured, the system extracts these data from the

relevant data-tables. The results are presented separately for different test types, and

knowledge about the reliability of the test to measure the parameter is also provided

(from the Tests knowledge base). The applicability of the test to measure the

parameter in the type of ground of the chosen layer is also reported at this time. This
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direct measurement stage demonstrates how efficient data management can assist the

geotechnical specialist in fulfilling their task.

When the directly measured data are retrieved from the database, any other measured

data that have been obtained are also extracted. The Parameter Correlation knowledge

base can then be accessed to see if the parameter required can be obtained from

correlations with these other data (Giolas, 1994). A wider scope of results are

therefore given to the user from which to formulate a judgement. The system

responds with a selection menu of correlations that are applicable. Each correlation

may be executed in turn as required by the user. Results from the correlations can be

compared with the directly measured results, providing a means of checking the

validity of the measurements. In some cases the user might use the results from the

correlations as well as, or even in preference to, the direct measurements in coming to

a decision as to which value to choose for design.

As a fmal check, or in the event of there being no measurements which can be used,

the parameter required can be assessed from the field description by accessing the

Ground knowledge base. The parsed layer description can be assessed to obtain a

broad range of typical values (Giolas, 1994). The more detailed the field description,

the narrower and more precise will be the range of values.

8.3 Operation of Parameter Assessment Module

Geotechnical specialists need to know answers to specific questions before they can

begin to make informed decisions and it is the role of Decision Support Systems to

assist in this process. The parameter assessment module of SIGMA allows the

engineer to select a specific location on a known site investigation and extract data on
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Parser
VASIC
Knowledge Bases
Parameter Assessment'
Data Handling
Correlate

SIGMA

System for the Interpretation of Geotechnical Information
University of Durham

School of Engineering and Computer Science

Select	 Exit

a variety of parameters for design purposes and if necessary correlate other

parameters. The work carried out for the correlation and parameter estimation

modules have been undertaken by Giolas (1994) and as such are outside the scope of

this thesis. Work within this section will concentrate on the development of the first

stage of the parameter assessment module, but will discuss how the parameter

assessment module as a whole will operate which will include the correlation

interface.

Figure 8.1 - Initial SIGMA screen

Figure 8.1 shows the initial screen of SIGMA, displaying the currently available

modules. On choosing the parameter assessment option, the system automatically

links through to the database and extracts all the data held in the project

(investigation) table. This data extraction process is described in detail later in this

section. These data are then displayed in a selection menu, Figure 8.2, with its

identification number, start date and location. Several other data fields are available

from the project table, e.g. project client, contractor, and any of these could also be

shown on screen. Also, a data field can have a search condition attached, so as to

reduce the amount of data to extract and search. The user selects a project by use of

the mouse, and confirms this action by depressing the OK button.
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Hole id=10 Hole Grid ref=4319051530100 Hole depth=70.2
Hole id=9 Hole Grid ref=4312541530487 Hole depth=69.36
Hole id=0 Hole Grid ref=4326151530130 Hole de ith=60.251
Hole id=7 Hole Grid ref=4329501530060 Hole depth=62.00r
Hole id=6 Hole Grid ref=432710/530306 Hole depth=6635

Select a borehole :>

r•Ar r
	 ML ProleCtinterface 

1 Project id = 234512 Project Date=21/07i91 Protect Location=Newcastle
iltuaidgiaLigiumazsgigniatailajageijillit

Select a project :, 	 Project id .. 222222 Project Data=1211194 Project Location=hartiepool
Project id .. 123457 Project Date-12112/93 Project Lncation=hartlepool

Exit I

Figure 8.2 - Parameter Assessment project screen

The project identification number (proLid) for the selected item is then used as the

search criteria for the hole table. All the boreholes/trial pits for that specific project id

are extracted from the data-table and formatted for display in another selection menu,

Figure 8.3. As with the previous screen, the data shown (borehole identification

number, grid reference and final hole depth) could be modified to suit the user.

$1PM8 orellokt,Interface 

For Project ID 1111 the following boreholes are available.

OK 
f	

Dismiss I

Figure 8.3 - Parameter Assessment Borehole screen

The user then selects a borehole to investigate, again with the use of the mouse, and

the layer data for that particular borehole are extracted. Due to the structured format

of the SIGMA database, data from several tables are combined to produce the output

seen in Figure 8.4. The selection conditions that allow specific data to be extracted

from several tables are manipulated into text strings and these text strings are then
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,Layer No=10 Layer depth=61.4 Main soil type=clay
Layer No=9 Layer depth=62,5 Main soil type=clay Origin=Fluvio_glacial
Layer No=8 Layer depth=63.35 Main soil type=clay Origin=Fluvio_,glacial
Layer 110=7 Layer depth=66.5 Main soil type=gravel Origin=Alluvial
Layer 110=6 Layer depth=68.35 Main soil type=clay Origin=nia

For Project ID 1111 and Borehole ID 8
the following layers are available:

OK 
J	

Dismiss I

soil_type
profile
piezometric_pressure
angle of friction = = r Emu t

Select a parameter
to assess:›

1kA

OK I	 Dismiss

Gtelik,,kt " t Pter g_te

passed to the appropriate Additional WhereString slots on the respective source

object (Section 6.4.3). This methodology allows precise access to the data through a

simple selection menu interface.

Figure 8.4 - Parameter Assessment layer screen

The user selects a layer, i.e. a depth, that is of interest and the system responds with a

selection menu of the parameters available for assessment, Figure 8.5. On selecting a

parameter the system identifies which tests have been carried out on the layer in

question.

Figure 8.5 - Parameter Assessment parameter selection screen
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This is accomplished by consulting the lbrf and isrf tables in conjunction with the

Tests knowledge base. All the relevant data for the layer in question is imported into

the Sig93D domain using the AdditionalWhereString methodology described in

section 6.4.3. The test codes of all those tests that have been carried out on a

particular layer are contained within the lbrf and isrf tables (section 6.3.2). These

tables are consulted and the test data imported from the appropriate test tables. Now

the Tests knowledge base must be consulted to ascertain the applicability and

reliability for these tests in the soil type of the particular layer in question. For this

purpose the main soil type is used - no account is taken of other constituent types.

As previously mentioned in section 5.3.2 each test (whether laboratory or in-situ) is

identifiable by a test code. The same test code is used in the GeoTec database as in

the Tests knowledge base, enabling the required tests to be easily located. Facets on

the Reliability and Applicability slots of the appropriate test objects are then consulted

to identify which are capable of measuring the required parameter and how applicable

they are for the soil type in question. This is carried out by using a non-deterministic

call to the facets in question and placing the successful results into the appropriate slot

of the calculation object SIG_K in the parameter assessment domain. This

calculation object provides similar functionality to the Kalker object in the parser

domain.

Once this data has been established it can be reported to the user. This is achieved in

the form of a list box on the Direct Measurement Dialog Box, with each row

representing one test type, see Figure 8.6. Each row comprises the test code of the

test in question followed by a brief statistical summary in the form of an average,

maximum, minimum values and a sample size. The appropriate applicability and

reliability data for each test is also shown.
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DSS1 Avg= 133, Max=134 Nin=132 No. tests = 2 [Rel. = n/a App. =n/a]
ICIUD Avg= 119, Max=125 Nin=113 No. tests = 3 [Eel. = high App. = high]
TRIM Avg= 130, Nax=140 Nin=117 No. tests = 3 [Rel. = medion App. = low]
ivan Avg= 135, Max=150 Nin=120 No. tests = 4 [Rel. = high App. = none]

Project ID 1111, Borehole ID 0 and in Layer No. 3
The following test data for the parameter 'undrained_shear_strength' N available

Further Details,

OK	 Correlate Default Values	 Help

StqtYteiPireqUe,st,,AtAult in1PriumP

Figure 8.6 - Parameter Assessment direct measurements screen

If the user selects any row of the Direct Measurement Dialog Box and then clicks on

the Further Details button, the individual data table records are displayed. This is

accomplished using the database interfaces previously described in Section 7.5. This

gives the user the ability to browse through the actual data to gain a fuller

understanding of the overall picture.

When the directly measured data are retrieved from the database, any other measured

data are also extracted. The Parameter Correlation knowledge base can then be

accessed to see if the parameter required can be obtained from correlations with these

other data. This gives the user a wider scope of results from which to formulate their

judgement.

The relevant information is passed across to the correlation module, i.e. the selected

parameter, the ground type and the other measured data. The system responds with a

selection menu of correlations that are applicable. The user then selects those of

interest and each correlation is displayed with its own individual interface, as shown

in Figure 8.7.

148



VP tAtand,Butler, 

Number of blows from SPT, N_SPT (blows) 1(10, 17)

Plasticity index, PI	 1(25,34),.

Undrained shear strength, Su

min:

max:

average:

(26.0,

(56.0,

(41.0,

49.0)

100.0)

74.0)

Overall min, mean, max: (26.0, 50.0, 100.0)

Estimate I Applicability I 	 Reliability Comments I	 Dismiss

Number of blows from SPT, N_SPT should be between
0 and 60 blows.
Plasticity index, PI should be between 5 and 70.

The reliability of this correlation increases if
The N_SPT number is corrected for test procedures
to N_60 (according to Skempon's N_SPI corrections).

Dismiss I

Comments

Figure 8.7 - Parameter Assessment correlation screen

The user may then execute each correlation in turn. The results from the correlations

can be compared with the directly measured results, providing a means of checking

the validity of the measurements. Each correlation has comments and reference

material associated with it that can be viewed separately by the user, Figure 8.8. In

some cases the user might use the results from the correlations as well as, or even in

preference to, the direct measurements in coming to a decision as to which value to

use for design.

Figure 8.8 - Sample correlations additional reference material
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As a final check, or in the event of there being no measurements which can be used,

the parameter required can be assessed from the field description by using the Ground

Knowledge base (Giolas, 1994). It is proposed that this will provide a broad range of

typical values to act as a rough guide to the user. The more detailed the field

description, the narrower and more precise will be the range of values. This work is

still in the development stage and has not been fully implemented within SIGMA

although an operational prototype is available

8.4 Borehole Interpolation

One of the primary aims of a site investigation is to identify the sub surface ground

conditions throughout the site, based on observations at discrete borehole locations.

This interpolation is usually carried out by geotechnical specialists who can apply

experience gained from previous investigations, a knowledge of the site, published

literature and fellow experts to arrive at hypothesises of the sub surface conditions.

These hypothesises underlie the decision making in the ensuing design process.

The application of computer based techniques to this process has been attempted on

many previous occasions and has proved a difficult task due to the inherent variability

of geological and geotechnical systems. This variability makes it an area that presents

an ideal situation for the application of knowledge based techniques, as stated in

section 3.2. The task of computerising the process of interpolation is also particularly

suited to the structure of SIGMA with the availability of a centralised data store and

the modular object oriented functionality. Indeed, it has been the aim of the

implementation of the borehole interpolation to discover if an object oriented

approach to the problem can add to the already discovered knowledge of the domain.
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It is undoubtedly true that the object oriented methodology with its dynamic

hierarchies of objects, each object having variable storage capacity and behaviour

combined with the principle of knowledge separation have been used to good effect in

many engineering and research projects. Many real time applications, that is the

monitoring and control of live or active systems as have large areas of the Artificial

Intelligence community (Stefik and Bobrow1986), have benefited from its

introduction, indeed some of PROKAPPA's main applications are in this area. The

author has highlighted those areas where the new approach could improve the method

and concentrated the implementation on these areas.

8.4.1 Previous Work

Carrying out this borehole interpolation, or parts thereof, with the use of a computer

systems has been attempted on several previous occasions (Neidell, 1969; Rudman et

al, 1973; Day eta!, 1983, Rehak eta!, 1985; Lok, 1987; Vaptismas, 1993; Ibrahim,

1994) with varying degrees of success. Two approaches have been developed, a

cross-checking mechanism to identify patterns within the adjoining strata and rule

based systems.

The approach of Rudman et al and, at a more sophisticated level, by Neidell has been

to implement a cross-checking methodology to match similar patterns in adjoining

strata. This methodology, designed for use in the oil industry, suffers from the

assumption that all strata will participate in all boreholes and that the strata will be

geometrically similar in separate logs. However the reality of the situation is that

strata die out and appear and so simple pattern matching will break down. Neidell

introduced an ambiguity function into the pattern matching process whereby a

shrinking and stretching algorithm was applied to the strata in an effort to effect a

suitable match, producing a more effective methodology.
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However, cross-checking approaches to borehole correlations have proved essentially

inconclusive, possibly due to their inherent simplicity. It is this simplicity, attached to

experienced human perception, that makes cross-checking such a useful manual tool.

Humans can match patterns with a degree of variability very successfully, allow for

small variations in scaling, that is stretching or shrinking, and produce a meaningful

result. In addition the geotechnical processes by which the strata have been formed is

an important input into the interpolation process. If a non continuous time span is

present in one of the boreholes then the cross checking method is not comparing like

with like.

Norkin (1985) and Rehak et al (1985) implemented a rule based methodology to

determine the correlation between borehole layers. General rules were applied to

description data known from borehole samples to ascertain a similarity each with an

assigned certainty percentage. This method works well theoretically on simple

descriptions, however the complexity of real soil descriptions (see Section 3.2) may

limit this approach in practise. The breadth and depth of the rule base, incorporated

with the ability to update this rule base as required will also necessitate a powerful

environment in which to operate.

The approach of Vaptismas with the Value Assignment and Similarity Calculation

(VASIC) methodology, utilised borehole correlation based upon parsed soils

description data. This data was subject to analysis over a range of parameters in an

attempt to gain a more detailed comparison. Similarity Numbers are produced which

allow the strata to be compared on a numerical basis (Toll et al, 1993). Automated

processes were established that allowed complex strata with several soil types to be

successfully compared. A fuller description of the VASIC methodology is given in

the following section.
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Ibrahim took the rule based idea put forward by Norkin and Rehak et al much further

forward by implementing a set of rules based on several attributes of the particular

strata. This level of detail allows for complex cross analysis to be achieved on the

basis of multi-variate correlations. Each attribute is primarily assigned a qualitative

descriptor from the rule base and then all the descriptions available are converted into

a numerical value, in a similar manner to that used by Vaptismas. These numerical

values, or Numerical_Index (NI) are then weighted and bounded to produce a ranking

of possible solutions. The system lacks the ability to deal with complex strata

descriptions, for example silty CLAY is deemed to be dissimilar to clayey SILT. In

addition the data is stored and manipulated in such a manner as to be only accessible

from the system itself. Implemented in Leanardo, a PC based expert system

environment, the system only has the ability to link to its own flat file structures.

The decision was taken to implement the VASIC method for correlation of borehole

strata within the SIGMA environment as it was seen as the only method which can

handle the complexities of real soil descriptions. The data required was available in

the correct structure from the GeoTec database (the output from the parser). An

object oriented implementation should offer scope for enhancement not only of

VASIC but of the computational approach to the interpolation problem. What follows

is an implementation of aspects of Vaptismas' work and as such the methodology

behind it has already been covered in great depth (Vaptismas, 1993). The work

presented in the thesis concentrates on those areas where the implementation differs

from the original and where the object oriented approach has been shown to provide

an improvement to the previous methodology.

8.4.2 VASIC Methodology for Comparing Borehole Layers

The fundamental principle behind the methodology is that a nominal particle size

distribution can be generated by processing the soil types (constituents and their
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Soil description: Slightly silty, slightly gravelly sandy CLAY.

Main constituent type:

Major constituent type:

Secondary constituent type:

Minor constituent type:

154

Clay

N/A

Sand

Silt, Gravel

associated amounts) stored in the GeoTec database. In the original methodology the

overall correlation takes into account not only the soil type but also the consistency,

structure and colour. The module that has been implemented within SIGMA currently

relies solely on the soil type attribute, this being the most important aspect within the

soil description (Vaptismas, 1993) in addition to being the most difficult facet to

compute. The additional attributes and associated weighting factors could be added at

a later stage.

Once a stratum has been broken down to the soil type level, the strata can be

represented as a combination of Main, Major, Secondary and Minor constituent

amounts. These combinations can be converted into the relative percentages of each

constituent type present. Vaptismas defined percent lists, different for fine and coarse

grained soils for combining the constituent percentages (Appendix 2). These percent

lists were constructed using the British Soil Classification System (BS 5930, 1981)

which presents the data in the form of ranges for a particular descriptive modifier.

In order to construct a notional particle size distribution it was necessary to represent

the percentage passing by a single value instead of a range of values. The values

could not be uniquely defined for a given descriptive term but depended on the

number (and amounts) of other soil types given in the description. Therefore a matrix

of percentage values was defined for different combinations of amounts present in the

description. This is illustrated in Figure 8.9.



Figure 8.9 - Example of constituent combination in layer description

Therefore the description has one Main constituent, no Major constituent, one

Secondary constituent and two Minor constituents. Vaptismas expressed this as an

amount list, presented in the order [Main, Major, Secondary, Minor]. Therefore the

Amount-list for the above example would be [1,0,1,2] and since the soil is fine

grained (main constituent type: CLAY), the appropriate Percent-list would be [40, 0,

30, 15] (see Appendix 2).

The particle size distribution so generated can then be compared numerically with

another distribution to give a Similarity Number. The comparison between the two

distributions was made by observing the difference in percentage at a number of

particle sizes. The similarity is given as 100 minus the average absolute difference.

For n points on the particle size distribution

1 \la"
Similarity Number = 100 - —n La 'Percentage Difference'

1

This number is calculated using n=6, the six points representing the limits between the

six different inorganic soil types (particle diameters of 0.002, 0.06, 2, 60, 200 and

>200 mm). The Similarity Number has a value between 0 and 100, a higher number

implying increased similarity.

An example of a comparison together with the calculated Similarity Numbers are

given in Table 8.1. In the example a "very silty clayey SAND", is compared to a

"silty SAND", indicating the following percentage differences at the six points

identified above:
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Very silty, clayey SAND

Silty SAND

COBBLES BOULDERSCLAY

Percent
Passing

Description Particle Diameter (mm) 0.002 0.06 2 . 60 200 > 200

very silty clayey SAND Percent Passing of Soil 1 10 35 100 100 100 100

silty SAND Percent Passing of Soil 2 0 10 100 100 100 100

Percentage Difference 10 25 _	 0 0 0 0

The Similarity Number is : 100 - 1/6 (10 + 25+0+0+0+0), so Similarity Number = 94.

Table 8.1 - Similarity Number Calculation

The notional particle size distribution for the two soils being compared is shown in

Figure 8.10
Similarity = 94

Figure 8.10 Examples of comparisons between soils in terms of soil type.

Vaptismas extended this methodology by introducing the concept of an Area

Identifier Number, AIN, which is a numerical representation for a particular layer, as

opposed to the Similarity Number which represents a comparison between two layers.

Vaptismas widened the overall VASIC method to cover the interpretation of a site by

adopting a seven point approach.

• Identification of Possible Marker layers

• Configuration of Triangles

• Connection between Pairs of Marker layers
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• Assessment of Planar Marker Beds

• Calculation of Dip Angle and Dip Orientation

• Continuity of Planar Marker Beds Across the Site

• Borehole-to-Borehole Correlation

The site is configured into triangles in order to assist processing, thereby dividing the

site into manageable portions, the nodes of the triangles being the borehole locations.

The algorithm to produce this triangulation was proposed as an automatic mesh

generation scheme (Frederick et al, 1970; Lindholm, 1983). Work has been carried

out at the University of Durham (Wade, 1994) to automate this procedure for any

given site.

The site wide implementation is shown in Figure 8.11. The process first identifies a

site-wide model of the ground conditions using marker layers; these are layers which

'stand out' from the general ground conditions (in terms of either soil type, colour or

consistency) and can therefore be more easily traced across the site.

For instance, if a layer of gravel is present among what are otherwise clayey layers,

this would be highlighted. This is achieved by comparing layers within the borehole

using the Similarity Number. Trigger levels of Similarity Number are specified for

identifying significantly different layers, so as to highlight them as potential marker

layers.

The continuity of marker layers is examined at a number of levels. Again, the

'methodology of Toll et al (1993) is used in which a Similarity Number is calculated

from a comparison of the qualitative terms used to describe two layers in adjacent

boreholes. Links are established between the most similar marker layers, providing a

threshold value of similarity number is achieved.
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Beds
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Construct Hypotheses
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Figure 8.11 - Illustration of site-wide borehole interpolation (Vaptismas and

Toll, 1993)

Initially this is done between borehole pairs and then within groups of three boreholes

(triangles). Layers which are found to be continuous within these groups (triangles)

are then checked for compatibility with adjacent triangles. Where continuity exists

between adjacent triangles, site-wide 'trends' are established. Each trend represents a

hypothesis which could explain the ground conditions observed. The trends are

presented to the user for a final decision as to which will be selected as the basis of the

model of the ground conditions to be generated.

8.5 Object Oriented Implementation of VASIC Methodology

The initial implementation of the borehole correlation method was in PROLOG, a

General Purpose Representational Languages (GPRL). Two of PROLOG's main

advantages over conventional programming languages are its ability to create and

apply simple logic within the structure of the program and its ability to quickly and

efficiently manipulate lists. It was this list manipulation that enabled the prototyping

to be carried out for the borehole correlation at a very early stage. However, the end

result was a complex standalone PROLOG program that was manipulating lists of up

to 20 to 30 elements. However for site wide comparisons this figure could increase

markedly. Therefore it was decided to include the borehole interpolation routines

within the SIGMA environment, thus providing integration of another tool to aid the

geotechnical specialist.

Using the ability of PROKAPPA's model engine it was thought that the processing

problem could be approached from a different aspect whilst retaining the original
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methodology. The seven point approach used by Vaptismas has been reduced within

SIGMA, the site wide interpolation process being reduced to a proposed five steps,

namely:

• Configuration of Triangles

• Identification of Marker layers

• Assessment of Planar Marker Beds

• Continuity of Planar Marker Beds Across the Site

• Borehole-to-Borehole Correlation

This reduction in phases of the method could be achieved due to the structure of the

new system. As marker layers are being identified within one borehole they are also

compared with the other boreholes participating within the triangle, allowing for

quick identification of planar marker beds. These triangular planar beds are then

compared within adjoining triangles to identify if they belong to the same site wide

trend.

For the implementation of the Vaptismas method, the hierarchical structure has

proven very effective. 1,Jsing a HOLE hierarchy each participating borehole and layer

is represented in a dynamic model that is constructed for each run of the system. The

triangulation methodology that was utilised by Vaptismas has also been transposed to

operate in the object oriented environment, and has incorporated the links and bedding

planes subsystems as well.

8.5.1. Object Hierarchies within the VASIC Method

As with many of the SIGMA modules, the heart of the borehole interpolation module

are the dynamic object hierarchies that are utilised during processing. In procedural
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languages, active memory is utilised and managed throughout the execution of a

program, either manually or automatically, through the medium of variables. These

variables can be local, public or global and take many forms, for example single

value, arrays or pointers. Within an object oriented environment this active memory

management is carried out via the objects, subclasses and instances that constitute the

object hierarchy, in conjunction with the environment's own memory subsystems.

This allows data to be passed down the hierarchy in the form of inheritance, so

providing a continuity throughout the dynamic model. The flexibility this offers to

the system's developer is the ability to view the system's exact potential and value at

any stage in the proceedings. The flexibility it offers the final system is the ability to

model a given dynamic situation or domain, provide any inference or maintenance as

required and then apply the model to a series of problems.

The VASIC module utilises three discrete object hierarchies, namely HOLE,

TRIANGLE and LAYER. The HOLE model is the representation of the boreholes

and their respective layers within the area being considered for VASIC processing, the

detail being imported from the GeoTec database via the Sig93D domain. The

LAYER model is the structure that is used to calculate the AIN for marker layers and

Similarity Number in borehole to borehole comparisons. The TRIANGLE model

holds details of the triangles into which the site must be subdivided in order for the

site wide comparisons to be carried out.

161



8.5.2 The HOLE hierarchy

Figure 8.12 HOLE object hierarchy

The HOLE model in its initial state consists of just a single top class object, HOLE.

After the VASIC interface has imported the requested data into the Sig93D domain,

the preliminary VASIC routines identify the number of boreholes and creates a

subclass of hole for each. The imported data is interrogated to identify the number of

layers within each of the boreholes. One instance per layer is then created as an

instance of each of the hole subclasses and named accordingly, so arriving at the

structure shown in Figure 8.12. As can be seen, the final structure is that of one

instance per layer of each participating borehole. An example slot table for one of the

layer instances is shown in Table 8.2, detailing the information capable of being

stored in each instance.

Slot Name Description Typical Value

AIN Area Identifier Number 234
dtop Depth to top of layer (m) 76.43
hole_no Borehole number (id) 1
markerlay Used in the identification of marker

layers
"TRUE"

nate Natural Easting 431162
natn Natural Northing 530687
constituents Pointers to instances that make up

the layer
sldt("1111","1",1,1,1),
sldt("1111","1",1,1,2)

thck Layer thickness (m) 3.6

Table 8.2 Slot Table for layer instance with typical values
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There are several points to note on the contents of the slot table, namely:

AIN - The Area Identifier Number, which is calculated independently as a precursor

to the identification of bedding planes.

markerlay - Used as a marker to identify those layers that appear to participate in a

marker layer.

constituents - Contained in this multi-valued slot are the names of those instances

within the Sig93D domain that participate in the particular layer. This allows the data

stored in these instances to be available to the interpolation routines without actually

being present within the VASIC domain. The nomenclature used is the UID

methodology previously discussed in sections 6.4.1, 7.4.6 and illustrated in Table 8.3.

sIdt("1111","1",1,1,1) sldt("1111","1",1,1,2)

project_id = "1111" project_id = "1111"
hole id=" 1" holeid="1"
layer_no=1 layer_no=1

stratum no=1_ stratum no=1_
constituent_no=1 constituent no=2

Table 8.3 - Illustration of UID nomenclature for sldt objects

In effect this method links across PROKAPPA applications and creates a linked

object hierarchy without having a duplication of the data records themselves. Some

duplication of the actual data is required, but only to the extent that the same data may

be present within several domains simultaneously.

8.5.3 The Triangle Object Hierarchy

The VASIC method utilises the sub-division of the site into triangles in order to

process the borehole data. Each triangle has three participating boreholes and an

associated quality index, q. This is a measure of the geometry of the triangle, where

for an equilateral triangle q=1 (i.e. good quality), whereas a triangle which tends to a

straight line has q=0 (i.e. poor quality). Correlation of boreholes inside triangles of
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poor geometry may cause misinterpretation of the ground conditions, so q is used as a

guide as to which triangles are appropriate for use.

The object hierarchy for processing the triangles consists of a top level class

TRIANGLE which has subclass objects for each triangle in the site being

investigated. The slots contained on the triangle subclass objects are listed in Table

8 .4.

Slot Name Description Typical Values

BH Contains	 the	 numbers	 of	 the
participating boreholes

3, 4, 8

Links Contains the individual links H3L1-H4L1, H4L1-H8L1, ...
marlayer Contains	 pointers	 to	 the	 HOLE

instances that make up the bedding
layer

(H3L1, H4L1, H8L1), ...

q Quality Index 0.807

Table 8.4 - Slot table for TRIANGLE subclass object

The Links multi-value slot contains the names of the instances that have been

identified by the comparison routines as being similar. These links are then analysed

to ascertain if they constitute a marker layer, that is that three links together form a

discrete triangle of layers within the main triangle itself. Once this has been

established these marker layers are stored in the multi-value slot mar layer.

As possible bedding layers are identified they are added to the multi-valued mar_layer

slot on the appropriate triangle subclass. Using a sorting routine to ensure a similar

order, the planes are added utilising the ProTalk +=--- construct, so avoiding

duplication of existing bedding planes. The += construct adds a value to a multi-

value slot or facet, however if the value is already present, no addition is made.
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1
8.	 bound inputs;

9. 1*** Initialise program variables

10. ?main=()' ?sec = 0; ?maj = 0; ?min 0; ?accum = 0; ?total = 0;

11. /*** Deleting objects ready for processing

12. clearing);

13. /*** Main loop for forming the reference string
14. for ?inst must ?inst list;	 /*** Backtracks through all the

15. do {	 1*** participants in the layer

16. select	 {
17. case:?inst.sldt_arrint	 "main";
18. { ?main = ?main+1;	 /*** Increment soil amount counter

19. main.soil_type	 ?inst•sldt_type;}/*** Add soil type to SOIL subclass

case:?inst.sldt_amnt 	 "major";
20. {?maj = ?maj+1;
21. maj.soil type ?inst.sldt_type;}
22. case:?inst.sldt_ainnt 	 "secondary";
23. {?sec = ?sec+1;
24. sec.soil_type	 ?inst.sldt_type;}
25. case:?inst.sldt_amnt =-- "minor";
26. {?min = ?min+i;
27. min.soil_type +=---- ?inst.sldt_type;}
28.
29.

30. /*** Classify the main constituent as either fine or coarse grained

31 - ?class = classify();

32. /*** Construct reference string for percent look up

33. ?ref string = AppendStrings("C",
34. ConvertToString(?main),
35. ConvertToString(?maj),
36. ConvertToString(?sec),
37. ConvertToString(?min));

38. /*** Looks up percent list
39. ?perc_list GetFacetValues(Ref, ?class, ?ref string);

40. /*** Allocate percent passing
41. for ?x from 0 to 3;
42. do
43. ?soil cat = ConvertToSymbol(ListNth('(main, maj, sec, min), ?x));
44. ?soil_cat.perc_pass = ListNth(?perc_list, ?x);
45.
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46. /*** Set CONS percentages for individual constituent AIN
47 . for ?inst inlist all subclassof Layer;
48. do
49. findl ?inst.soil_type	 ?;
50. for ?ind_soil inlist GetValues(?inst, soil_type);
51. do CONS.?ind_soil = ?inst.perc_pass;
52.

53. /*** Calculate and allocate AIN
54. for ?soil_cat must '(clay, silt, sand, gravel);
55. do {
56. ?accum = CONS.?soil_cat + ?accum;
57. ?total = ?total + ?accum;
58. CONS.?soil_cat = 0;
59. }
60. ?lay_name.AIN = ?total
61.}

The function ain() is called by a function that is cycling through the participating

boreholes. When a borehole has been identified, its layer instances are then

ascertained and each layer is passed to ain(), bound to the variable ?lay_name. Each

layer instance holds the names of the constituents that make up that layer (see Table

8.3) and this detail is also passed to the function, bound to the variable ?inst_list.

After setting various temporary variables and counters to zero and returning the object

base to its initial state, control passes to the main reference loop.

Within the reference loop each soil constituent instance has its soil amnt slot value

(which contains the amount - Main, Major, Secondary, Minor) examined individually

using a select/case statement (lines 16 - 28), which has the syntax of a multiple if

statement. Four variables are used as counters for the four soil amounts and the

control of the function passes to the next statement group when all the instances have

been examined. The variable ?class is then bound to either the value Fine or Coarse,

depending on the classification of the soil. This classification is carried out by the

function classify() (line 31) which uses the British Standard Soil Classification to

determine the generic group to which the main constituent type or types belong.
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N'itiKE,-71t;t1171,

•	 .......... ........	 .......
Facet Edit View instrument

Facets Values

CI000(mv) 100, 0, 0, 0

C1001 (my) 97, 0, 0,3

CI002(mv) 94, 0, 0, 3

ICI003(mv) 91, 0, 0,3

CI 010(mv) 90, 0, 10, 0

CI 011 (mv) 87, 0, 10, 3

CI012(mv) 84, 0, 10,3

C1020(mv) 80, 0, 10,0

CI 021 (mv) 77, 0, 10, 3

CI030(mv) 70, 0, 10, 0

C1100(mv) 75, 25, 0, 0
------

C1101(mv) 72, 25, 0,3

The soil amount counters are then concatenated into a reference string to produce a

five digit code ?ref string. The percent passing data (the percent-lists described

earlier) is stored as facet values on two slots, Coarse and Fine, of the reference object,

Ref as shown in Figure 8.13: which slot is chosen depends upon the value of the

?class variable. ?ref string is then compared with the facet names on the appropriate

slot and on a suitable match the variable ?perc_list is bound to the appropriate

percentage passing values.

Figure 8.13 - Facet storage of Coarse grained percent list data

Due to the difference in the nature of the addition of the AIN variable, constituent

type and the calculation of the percentage passing list, soil amount, the calculation of

the actual AIN becomes a two stage process. Initially ?perclist is broken down and

allocated to the subclasses of LAYER (line 47), for example Main.perc_pass = 65%.

These percentages are then collected into the six main soil groups for addition in the

object CONS (line 54). On completion of this addition the AIN value is set as a slot

value on the ?lay_name instance (line 60).
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SIGMA*VASIC Module

System for the Interpretation of Geotechnical Information
University of Durham

School of Engineering and Computer Science

Please specify the boreholeiarea to be investigated:

Investigation Code : 1ifir

For boreholes, either leave blank to extract all boreholes,
name one or give a list either in the form 131, B2 or B1 - B13

Borehole No(s) :

Northings

Eastings

Extract Data' Prepare Data Run VASIC1

IExit I	 Cancel'	 Help I

A similar structure to ain() is employed for the calculation of the Similarity Number,

however there are two objects involved due to two layers being required to calculate

the Similarity Number. The body of the function is the same, the main difference

being that the Similarity Number is calculated by subtraction rather than the addition

of relative percentages.

8.7 Operation of the Borehole Interpolation Module

To access the VASIC system, the VASIC option is chosen from the main menu of

SIGMA, which brings up the initial dialog box, Figure 8.14. This screen allows the

user to choose the data that is to be imported into SIG93D domain and this choice

may be effected in three different ways.

Figure 8.14 - Initial VASIC Dialog Box
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Firstly, the user can input only the investigation code which will then cause all the

borehole data for that specific investigation to be imported. Secondly the user may

select specific boreholes to be imported, either by name in the form , of a list or by

stipulating a range. The range input will only be effective in those situations where

the boreholes are sequentially numbered. This option may be used in conjunction

with specifying the investigation code, or independently depending on the user's

requirements. Thirdly the user may specify Eastings and Northings for the selection

of the data. This is done by specifying an upper and lower bound for both Eastings

and Northings separated by commas, so as to describe four vertices of a rectangle as

shown in Figure 8.15. Again, this option can be used in conjunction with the

investigation code if required.

Figure 8.15 VASIC data import using Eastings and Northings

On completing any of the procedures described above the user presses the extract

button and the system will formulate the correct SQL from the data supplied and

import the data into the SIG93D domain, reporting as it does so the number of

boreholes imported.
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borehole 10 mean=410 sd=84 with marker beds, H1011 
borehole 9 mean=410 sd=04 with marker beds, H9L1
borehole 8 mean=473 sd=71 with marker beds, HOL1, H8L3, HOU
borehole 7 mean=437 sd=98 with marker beds, H7L1, H715
borehole 6 mean=463 sd=82 with marker beds, H6L1, H6L5
borehole 5 mean=469 sd=65 with marker beds, H5L1, H515, H517
borehole 4 mean=483 sd=55 with marker beds, H411, H4L5
borehole 3 mean=453 sd=89 with marker beds, H3L1, H314
borehole 2 mean=485 sd=77 with marker beds, H2L1, H2L4
borehole 1 mean=487 sd=48 with matter beds, H1LI Hi 13

Output
statistics

SI	 - asicinutput

OK I	 Cancel I
	

Help I

In order to carry out the VASIC process the working are has to be prepared, that is

the HOLE hierarchy constructed and the LAYER, CONS, CONS I, CONS2 and

TRIANGLE hierarchies made ready. This process, initiated by the pressing of the

Prepare Data button, is a lengthy process and for this reason is separated as a distinct

processing phase. Once carried out this process does not have to be repeated over the

entire VASIC session.

On completion of data preparation the user may initiate the VASIC routines by

pressing the appropriately marked button. The system will then attempt to identify

marker layers by following the methodology described in section 8.4.2. Once this has

been completed the statistics are reported back to the user. These are of the form of

the mean and standard deviation of MN for all of the boreholes that have been

imported, Figure 8.16.

Figure 8.16 Output statistics from VASIC marker bed routines

As discussed in section 8.5, as marker layers within one borehole are identified they

are immediately assessed within the participating triangle to see if the layer is present

within all the boreholes in the triangle. If it is found to be present in all layers, the

three layers that form this marker bed are stored separately in the form (H1L1, H2L2,
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H3L2), a simple string concatenation of the relevant borehole and layer. This enables

stage 3 in Figure 8.11 of the site wide methodology to be arrived at early in the

processing stage. The next stage is the linking of the marker beds contained within

the triangles to assess their continuity over the site as a whole. This process has not

currently been implemented within SIGMA

On completion of the identification of the marker layers across the site a TREND

interface is then displayed to the user on which are displayed any hypotheses that have

been generated. These hypothesis, or trends, are generated by matching marker beds

across triangles and are rated in order based on how many triangles participate within

a given hypothesis.

The TREND interface initially contains a trend list which displays those trends that

have been identified. On selection of a particular trend, all the triangles participating

and their associated marker layers are displayed in a list box. The user may then

select any triangle and those boreholes that make up the triangle are displayed in the

form of push buttons. The user may select which boreholes to correlate by depressing

the appropriate buttons and the system then carries out the calculation of Similarity

Numbers for these boreholes. The correlation takes into account the boundaries of the

marker layers, that is no correlation will cross over a planar marker bed. The

correlations are based on a similarity thresh-hold, that is only those correlations

surpassing this threshold will be reported in the appropriate list box. This similarity

thresh-hold can be set by the user, allowing full control of the decision making

process. Once discovered, the links are reported as concatenated strings of the form

borehole followed by layer, as in the marker layer. An interface showing a completed

session is shown in Figure 8.17.

This trend output informs the user of the subsurface borehole to borehole correlations

in conjunction with planar marker beds that have been identified across the site. This
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rend1 100°6.2
Trend2 (89%,2)
Trend3(100%,1)

H512-->H6L1
H5L3-->H6L4
H5L5-->H6L7

VASTc - Trend outputscreett
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Similarity threshold i9O -

Select a trend
(% participating
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Participating
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correlation
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areEREMBEI
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OK I	 Cancel I
	

Help I

data could also be displayed graphically, either in the form of fence diagrams or 2D

planar sections across the site. This would enhance the understanding of the data

whilst displaying the data to the geotechnical specialist in a format with which they

were familiar. To accommodate this graphical output, an interpolated model of the

site would need to be produced and stored - work is currently ongoing at the

University of Durham in this area (Chen, 1994).

Figure 8.17 Trend output from VASIC session

8.8 Conclusions

One practical aspect of having a knowledge based system with a site investigation

database as its core is that it allows the geotechnical specialist rapid access to this data

in differing forms. With the inclusion of the test data, this access allows interrogation

of the data in order to ascertain design criteria for a project. With the parameter

assessment module the user can not only access directly measured data for the

parameter being sought, but can also access all the other data measured at this

location. Correlations can then be applied to this data in order to obtain the required
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parameter. This therefore gives as wide a range of values as is possible and the user

can make use of all this information in deciding in a value to use in design.

The ability to compare, contrast and utilise this data in conjunction with those facts

stored in knowledge bases gives the user of SIGMA access to a large breadth of

knowledge. As the knowledge of a particular domain increases, the generic nature of

the structure of both the database and the knowledge bases allows for organic growth

of the system.

Tools such as the borehole interpolation module allow the user to manipulate the data

stored and carry out preliminary borehole and site wide interpretation to gain a feel for

the nature of the sub surface conditions. The ability to run through these routines

allows the user to make more informed decisions about potential hypothesises which

could explain the ground conditions.

The implementation of aspects of the VASIC methodology for correlation of borehole

layers in the object oriented ProKappa environment has proved a significant

contribution. The dynamics of the HOLE hierarchy provides an excellent framework

for the interpretation of ground conditions, a model that can be seen to be truely

generic. Whilst each site being investigated is unique, the model can be applied to

assist the geotechnical specialist in arriving at their understanding of the sub-surface

ground conditions. Furthermore, the linking to the GeoTec database allows this data

model to be as current as possible and due to the similarity in structure, the data

transfer and incorporation into the VASIC domain is smooth and efficient.

To fully appreciate the adoption of the VASIC methodology a graphical output is

required, to visualise the effect of the correlations. Work is currently being carried

out at the University of Durham to this end (Chen, 1994).
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Chapter 9

Discussion and Conclusions

9.1 Discussions

9.1.1 Role of knowledge based systems

The development of SIGMA has involved bringing together database and knowledge

base technology. The application of KBS in geotechnical engineering is still in its

infancy and SIGMA represents a significant contribution to this area.

Knowledge Base Systems (KBS) technology, as a component of the Artificial

Intelligence field, has been viewed by the public and industry alike with a degree of

scepticism. Terms such as 'expert system' and overstated claims for the advantages

and capabilities of such systems have certainly not helped their acceptance. The

reality of the situation is that KBS can provide an environment in which it is

significantly simpler to produce computing systems that have access to domain

specific knowledge.

Much of KBS technology has now developed to the stage where it can be usefully

used in geotechnical engineering. Knowledge can be stored in structured knowledge

bases, allowing access with simple inference programs or in the form of rules which,

dependant upon a given set of data, can control the flow of a program. Symbolic

processing, the ability to treat data, functions or concepts in the same manner, is a

software methodology that has been in existence for many years. Object oriented

methodologies are now well established in both the academic and commercial arenas.

175



KBS can be viewed as the bringing these different facets of computing technology in

a structured manner within the framework of a suitable environment. They offer the

ability to produce systems that can access large quantities of data and knowledge,

communicating these results to an end user. As we enter an era where the quantity

and quality of information increases daily, systems to manage and analyse this

information will become of increasing importance. It is the author's view that KBS

technology can assist in that process, possibly with advantages over other

conventional procedural computing systems.

Geotechnical engineering is an industry where the potential for integrated information

systems is great but as yet their implementation has been only on a piecemeal basis.

Whilst this situation exists there is a lack of continuity in the information flow

through a particular project, company or organisation. This makes the task of

managing the information more cumbersome and possibly inefficient. Any tool that

can assist in the managing of this information is of a positive benefit and systems such

as SIGMA can contribute in two specific areas.

Firstly the GeoTec database provides a conduit for the information flow. Based on

the AGS Data Transfer Standard, information from a ground investigation may be

entered directly, including all the test data. Many geotechnical companies have data

logging systems monitoring the laboratory tests and it would be feasible to have this

data transferred directly into GeoTec. Borehole reports could be produced,

management could monitor the progress of a particular investigation, engineers could

utilise the data for design calculations - all using the same database facility. This

continuity not only of data storage but also data flow enhances both effective data

management and data integrity.

Secondly, the combination of SIGMA's knowledge bases, database and analysis

modules can act as a Decision Support System, assisting the geotechnical specialist
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and providing an information management resource. Tools such as SIGMA offer an

addition to the often limited skilled resource within an organisation.

9.1.2 Comments on development software

As stated in Chapter 4, the decision was made very early in the project as to the type

of hardware to be purchased and the software environment to be chosen for the

development of the system. A brief discussion of both of these choices is included as

a guide to others embarking upon similar projects.

The Sun Sparc2 has proved to be a very reliable workstation. The system as

purchased has required no maintenance at all over the period of the project. The

additional disk capacity that was purchased did need replacement after 14 months due

to hardware failure. The replacement disk is still functioning satisfactorily. Software

for the Sun never presented any problems, the only point of note being the generally

high price of packages.

Whilst the PROKAPPA environment has been used to produce a working prototype

of SIGMA and demonstrated the appropriate methodologies, there are several points

to note with regard to its use in a research environment.

The PROKAPPA Data Access System, DAS, is a generic post sales module supplied

by IntelliCorp, the US manufacturers, capable of supporting many database types. As

a consequence it has been developed on a general rather than a specific scale. In

hindsight it might have been preferable for IntelliCorp to have produced a more

database specific product as the DAS did not prove to be as robust as other

PROICAPPA systems. For example to produce a data link the developer must map

each table individually and specify the data tables keys. If any later modification is

then made to the data table outside of the PROKAPPA environment, that is via

INGRES, the map within the DAS has to be modified accordingly. This proved to be
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a very difficult process as PROKAPPA seemed to maintain a link to the original map

rather than any amended version. A way for circumventing this was developed but

the situation remained far from satisfactory.

Additionally, the DAS suffered from a compiler error, manifesting itself in the

inability to make complied versions of any ProTalk file containing Data Access

references. This error is recognised by IntelliCorp and has been the subject of

corrective measures on their behalf. In practice this leads to slower performance

times for any ProTalk code that requires database access.

The problem of object congestion also affected the performance of the system. This is

particularly noticeable in applications that contained many objects, such as the

interface control area, database records and their associated mapping data and the

VASIC module. The manner in which the interface tools are handled (that is a dialog

box, itself an object, contains several other dialog box controls, each one of which is

an object) leads to the creation of hundreds of control instances. Database access

requires many class objects plus the creation of runtime instances (Chapter 6) and the

VASIC module builds a dynamic map of the boreholes to be analysed. Whilst the

model engine of PROKAPPA is excellent, large numbers of objects in the

development environment significantly reduced both system performance and

stability. This resulted in more memory being fitted in the Sun, expanding the RAM

up to 32 megabytes, significantly improving the systems response. Whilst the model

engine of the ProKappa system is one of its strongest points, the can become a

significant drain on system resources if used extensively. The Sun is capable of RAM

expansion up to 64 megabytes and only on reaching this limit would limitations of the

• system be reached.

With regard to stability, SIGMA was developed using version 2.1 of the PROKAPPA

system which since it is not the latest version would suggest that the environment
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should have been out of the period where software crashes are commonplace.

However, PROKAPPA was found to be occasionally unstable, more noticeable after

long periods of use. This would manifest itself by the system reporting internal errors

which would lead to automatic shutdown, yet the errors occurred after carrying out

simple tasks which had been undertaken successfully several times previously in the

same session.

Software will always have its failings and the overall impression of PROKAPPA was

very favourable. It is a powerful and easy to use environment with which to design

KBS. The above points have been raised as an indication of the type of problems that

may be encountered when undertaking a project such as SIGMA, regardless of the

software environment utilised.

The use of such software to develop prototype KBSs also highlights another important

issue within engineering research, namely who should be carrying out the research on

largely computer based projects. To construct prototype systems that are aimed at

commercial end products then a large developmental multi-disciplined resource is

required. This allows the engineers to have their input and the computer programmers

to develop the systems at a good pace utilising the current computing methodologies.

On an academic level, the resources simply are not there to allow this and so a

compromise has to be chosen. Engineers do have a good understanding of data and its

vagaries and if a level of computing expertise can be combined with this, it is hoped

that practicable systems can be developed, albeit at a slower pace.
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9.2 Further Work

SIGMA has been developed to investigate the application of KBS technology to the

area of Geotechnical Engineering.

SIGMA has been produced as a prototype system, in order to demonstrate the

effectiveness of the methodologies and the approach rather than producing a finished

system. Accordingly there are several areas within the existing system that could be

enhanced to bring the system to a final state, especially in the borehole interpolation

module. The aim of producing this module was to see if an object oriented approach

could improve the previous work in the area; the aim was not a full implementation of

existing work. Accordingly some aspects of the implementation could be enhanced,

namely the triangulation of the site and the site wide trend acquisition.

On the database side, a fully integrated suite of file reading programs could be

included in the system to pre-process and import an AGS file directly into INGRES.

The routines that are currently used are limited in nature and separate from SIGMA.

The scope for further work is massive with such a large scale project such as SIGMA.

One of the main considerations however before any further work is undertaken would

be whether or not to continue using the PROKAPPA environment. Whilst powerful

and capable of producing cross platform systems, there are a number of similar

products in the marketplace, both for workstations and PC's. Some of the competitors

are as powerful and capable as PROKAPPA whilst running on a PC based platform,

indeed the new version of PROKAPPA, KAPPA, is aimed more at PC platforms. A

possible approach in the future may be to have a workstation as the central hub of a

large scale KBS. This hub could act as a central data store, file and network server

where the power and multi-user potential of the workstation could be best served.
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PC's could logon to this main hub and either download data and software as required

or remotely access these facilities over a local or wide scale network.

If the system was to be taken further towards commercialisation then a bottom up

approach could also be considered, writing the established routines in a powerful low

level language which has system supplied database and object-oriented tool kits. This

approach could produce a polished and efficient end product.

The adoption of a national borehole database is a process which will be enhanced by

the establishment of a standard format for interchange of geotechnical information.

As stated in Chapter 6 there are advantages of scale and economics to be gained from

the establishment of a national borehole database and the wide scale implementation

of the AGS data exchange standard can only assist in this process. The administration

of such a national database would present a major challenge, as well as the

considerations of data confidentiality, collection and ownership. However these

problems are not insurmountable and if the geotechnical and civil engineering

communities could be shown the advantages to be gained from a national centralised

electronic data store then its case would be greatly enhanced. Hopefully work such as

SIGMA will go some way to illustrate the advantages to be gained.

The combination of Geographical Information Systems (GIS) with data structures

such as those used for the GeoTec database may prove an interesting area for further

development. Existing GIS systems have as an integral component a Relation

Database Management System (RDBMS) to store the data integral to their operation,

for example ARC/INFO has INFO, ARGIS has ORACLE (Scholten et al, 1990). The

application of a graphical interface to complement GeoTec would allow more efficient

data access albeit perhaps only when applied to a national database level.
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Additions to the data structure of the GeoTec database are another area where further

work could be carried out. The establishment of data structures to store the spatial

results of the borehole interpretation process with the framework of GeoTec would be

a significant advantage. Graphical routines could then use these structures to produce

2D fence and 3D contour diagrams of the area in question. Desk study data could also

be incorporated into the GeoTec structure and initial work on these data structures is

ongoing.

On completion of these further works, a full test of SIGMA utilising data from an

actual site investigation should be carried out using geotechnical specialists as users.

This would endeavour to prove the worth of such systems and SIGMA in particular.

9.3 Conclusions

A Knowledge Based System (KBS) called SIGMA has been developed to assist the

geotechnical specialist. Its role is to provide a source of knowledge and data that can

be consulted by the engineer to aid in the decision making process.

Geotechnical engineering is a suitable area for the application of KBS techniques due

to the nature and type of the data produced and the reliance on expert knowledge in

the field. As hardware and software platforms become capable of supporting more

complex systems, hybrid KBSs that utilise aspects of rule-based, frame-based and

logic programming become possible. The flexibility these hybrid systems offers

allow the developer to bring together the advantages of all aspects of KBS

technologies within a common environment. The ProKappa development

environment running on a Sun Sparc2 has been used in this work and has proved

capable of the task.
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SIGMA represents a contribution to the field of Decision Support Systems, a subset of

the KBS field, within the geotechnical engineering environment. SIGMA's role is

twofold - it provides the structures for geotechnical data management and tools to

assist the geotechnical specialist with the task of data interpretation.

SIGMA provides a methodology for the storage and analysis of ground investigation

data in an organised and controlled manner. Data structures have been developed for

storing all aspects of a ground investigation and have been implemented as a

geotechnical database, Geotec, which forms the core of SIGMA. The database design

has been conducted within the framework of the AGS standard, complemented by the

addition of structures to allow for storage of parsed soil/rock description data and

multi-level test storage, which could include pictures or document files. The database

has been designed using the relational data model and implemented using the

INGRES Relational Database Management System. The integration of the Geotec

database and the PROKAPPA KBS is that of a tightly coupled externally enhanced

expert system, giving the flexibility of dynamic data transfer when required whilst

allowing both systems to act as independent units.

SIGMA has been designed in a modular manner so that generic routines can

manipulate and analyse data to provide solutions to geotechnical problems. One of

the fundamental modules of SIGMA is the parser which is capable of extracting the

constituent and dominant soil/rock types and any other qualitative data from a layer

description. This additional information may be stored in the Geotec database,

complementing but not replacing the original text description.

With the parameter assessment module the geotechnical specialist has access to not

only the measured parameter data being sought, but also to all the other data measured

at this location. This data can then be correlated back to the original parameter in

order to give as wide a range of values as is possible.
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Tools such as the borehole interpolation module allow the user to manipulate the data

stored and carry out preliminary borehole and site wide correlations to gain a feel for

the nature of the sub surface conditions. It is hoped that with the ability to run

through these correlation routines the user is capable of making more meaningful

decisions. That is the main aim of SIGMA, to allow the geotechnical specialist to

make better informed decisions.

The continuity that SIGMA represents should be able to increase the efficiency of the

data management of a site investigation, important in these days of increased

information flow. The GeoTec database can centrally store geotechnical data and

make this information accessible to a global community, either via AGS standard data

transfer or direct database communication.

On systems such as this where the integrity of the data is of such importance, the data

checking incorporated within SIGMA give the user the ability to ensure consistency

and continuity of data. The more confidence the user has in the data being used

within SIGMA, the more likely is the acceptance of such tools in the geotechnical

workplace.

Knowledge bases can be continually updated as the knowledge of a particular domain

grows and the GeoTec database can accept data in a variety of formats, enabling the

system to remain current. Due to the modular structure of the system, other sub

systems may be added at later stages as new techniques and concepts become

available to aid the geotechnical specialist.

Due to time constraints on the project a full test of SIGMA on a real site

investigation was not carried out. This would have given the opportunity to evaluate
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the usefulness of such systems and to gain valuable feedback from prospective end

users.

The project has demonstrated the applicability of KBS technology to Geotechnical

Engineering. The way forward is the development of interpretation systems such as

SIGMA which can take advantage of the growth in computer based data storage.

Such systems can assist geotechnical specialists in processing and interpreting

geotechnical data.
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Legend:

K - Key Field
A - Comments field which could contain a pointer to an ASCII file

Appendix 1
Structure of Data Tables in the GeoTec Database

ro
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project! Site Investigation Code K
proj_name varchar(100) Name of Project / Site Investigation
proj_loc varchar(100) Location of Project
proj_date varchar(15) Commencement date
proj_clnt varchar(50) Project Client
proj_cont varchar(50) Main Project Contractor
proj_eng varchar(40) Principal Project Engineer
proj_memo varchar(250) Project Comments / Details A

hole
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
hole_type varchar(10) Type of Exploratory Hole
hole_nate i4 Natural Easting
hole_natn i4 Natural Northing
hole_gl f4 Ground Level (m)
hole_fdep f4 Final Depth (m)
hole_star date Start Date of Exploratory Hole
hole_log varchar(40) Definitive Person Responsable for logging the hole
hole_rem varchar(250) Comments / Details A
hole_lett varchar(10) O.S. letter Grid Reference
hole_locx i2 Local Grid X coordinate (m)
hole_locy i2 Local Grid Y coordinate (m)
hole_diam varchar(250) Hole diameter details
hole_casg varchar(250) Casing details
hole_endd date Hole end date
hole_bacd date Backfill date
hole_crew varchar(100) Drillers Name
hole_ornt i2 Orientation of hole, from north (deg)
hole incl i2 Inclination of hole, from horizontal (deg)
hole_exc varchar(100) Equipment used for excavation
hole_shor varchar(100) Shoring / Support used
hole_stab varchar(100) Stability comments
hole_dimw f4 Trial pit width (m)
hole_diml f4 Trial pit depth (m)

i
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eol
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
horz_no i4 Horizon number K
geol_desc varchar(300) Description of geological horizon
geol_leg varchar(5) Legend for horizon

la
Field Name Field Type Field Description Remarks
proLid varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
lay_no i4 Layer Number K
lay_dtop f4 Depth to top of layer (m)
lay_thck f4 Layer thickness (m)
lay_des varchar(300) Original description of layer

, horz_no i4 Horizon number

strt
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
lay_no i2 Layer Number K
strt_no i2 Strata number
strt_mstp varchar(30) Main soil type
strt_mscd varchar(30) Moisture condition
strt_cons varchar(30) Consistency
strt_psty varchar(30) Plasticity
strt_wthg varchar(30) Weathering

stst
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
lay_no i2 Layer Number K
strt_no i2 Strata number K
stst_stno i2 Structure number
stst_stct varchar(30) Structure feature
stst_spc varchar(30) Structure spacing
stst_dip i2 Dip
stst_onn f4 Orientation (deg)
stst_srf varchar(30) Surface
stst_dcon varchar(30) Discontinuity modifier
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cnst-
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
lay_no i2 Layer Number K
strt_no i2 Stratum number	 . K
cons_no i2 Constituent number
cnst_type varchar(20) Constituent Type
cnst_amnt varchar(20) Constituent Amount
cnst_grdg varchar(30) Grading
cnst_shp varchar(30) Shape
cnst_txt varchar(30) Texture
cnst_dstb varchar(30) Distribution

ctcl
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
lay_no i2 Layer Number K
strt_no i2 Strata number K
cons_no i2 Constituent number K
ctcl_clno i2 Colour number
ctcl_mc11 varchar(30) Main colour 1
ctcl_scl varchar(30) Secondary colour
ctcl_mod varchar(30) Colour Modifier
ctcl_strc varchar(30) Colour Structure

wstk
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
wstk_dep f4 Depth of water strike (m)
wstk_cas f4 Casing depth at water strike (m)
wstk_date date Date of water strike
wstk_time varchar(I5) Time of water strike
wstk_post f4 Post strike depth after wstk_nmin minutes
wstk_nmin i4 Minutes after strike
wstk_flow varchar(100) How rate remarks
wstk_seat f4 Depth at which water strike sealed by casing

tim
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
ptim_date date Date of progress reading
ptim_time varchar(15) Time of progress reading
ptim_dep f4 Depth at ptim_time (m)
ptim_cas f4 Casing depth at ptim_time (m)
ptim_wat f4 Depth to water at ptim_time (m)
ptim_rem varchar(250) Comments / Details A

Appendix 1



samp
Field Name Field Type Field Description Remarks
proj_id

.
varchar(10) Project / Site Investigation Code K

hole_id varchar(10) Borehole / Trial Pit Code K
samp_top f4 Depth to top of sample (m) K
samp_type varchar(30) Sample Type
samp_ref i4 Sample reference number
samp_dia f4 Sample diameter (m)
samp_base f4 Depth to base of sample (m)
samp_desc varchar(250) Sample description
samp_ublo i4 Number of blows required to drive sampler
samp_rem varchar(250) Comments / Details A
geol_stat varchar(10) Stratum code (for use with trial pits)

s dt
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
samp_ref i4 Sample reference number K
spec_ref i4 Specimen reference number K
spdt_dtop f4 Depth to top of specimen (m)
spdt_dbot f4 Depth to bottom of specimen (m)
spdt_spty varchar(50) Specimen type
spdt_rem varchar(250) Comments / Details A

core
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
core_top f4 Depth to top of core run (m) K
core_bot f4 Depth to bottom of core run (m)
core_prec f4 Percentage of core recovered
core_srec f4 Percentage of solid core recovered
core_rqd f4 R.Q.D. for core run
core_rem varchar(250) Comments / Details A

frac
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
frac_top f4 Depth to top of Fracture Index zone (m) K
frac_base f4 Depth to base of Fracture Index zone (m)
frac_fi varchar(5) Fracture Index over zone
frac_imin varchar(5) Minimum Fracture Index over zone
fraciave varchar(5) Average Fracture Index over zone
frac_imax varchar(5) Maximum Fracture Index over zone

iv
Appendix 1



drem
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
drem_dpth f4 Depth of drem_drem (m) K
drem_rem varchar(250) Depth related remark 	 . A

is t
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
ispt_top f4 Depth to top of test (m) K
ispt_seat i4 Number of blows for seating drive
ispt_main i4 Number of blows for main test drive
ispt_npen f4 Total penetration for test (m)
ispt_nval i4 SPT N Value
ispt_cas f4 Casing depth at time of test (m)
ispt_wat f4 Water depth at time of test (m)
ispt_type varchar(10) Type of SPT test
ispt_rem varchar(250) Comments / Details A
ispt_inc 1 i4 Number of blows for 1st 75mm
ispt_pen1 i4 Penetration (mm)
ispt_inc2 i4 Number of blows for 2nd 75mm
ispt_pen2 i4 Penetration (mm)
ispt_inc3 i4 Number of blows for 3rd 75mm
ispt_pen3 i4 Penetration (mml
ispt_inc4 i4 Number of blows for 4th 75mm
ispt_pen4 i4 Penetration (mm)
isptinc5 i4 Number of blows for 5th 75nun
ispt_pen5 i4 Penetration (mm)
ispt_inc6 i4 Number of blows for 6th 75mm

, ispt_pen6 i4 Penetration (mm)

ref
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
pref tdep f4 Depth to bottom of piezometer tip (m) K
pref date date Installation date
pref type varchar(10) Type of Piezometer
pref trps f4 Depth to top of response zone (m)
pref brps f4 Depth to base of response zone (m)
pref rem varchar(250) Comments / Details A

V
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obs
Field Name Field Type Field Description Remarks
projid varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
pobs_tdep f4 Depth to bottom of piezometer tip (m) K
pobs_date date Date of piezometer reading
pobs_time varchar(15) Time of piezometer reading
pobs_dep f4 Depth to water below ground surface (m)
pobs_head f4 Head of water above piezometer tip (m)
pobs_rem varchar(250) _ Comments / Details A

dss
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
samp_ref i4 Sample reference number K
spec_ref i4 Specimen reference number K
cIss_nmc f4 Natural moisture content
clss_11 f4 Liquid limit
cIss_pl varchar(5) Plastic limit
cIss_pi varchar(5) Plasticity index
clss_dden f4 Dry Density (Mgm-3)
clss_bden f4 Bulk Density (Mgm-3)
cIss_pd f4 Particle Density (Mgm-3)
clss_425 f4 Percentage passing 425 um sieve
clss_prep varchar(100) Method of preparation
cIss_slim f4 Shrinkage limit
clss_ls f4 Linear shrinkage
clss_hvp i4 Hand vane undrained shear strength, peak (kNm-2)
cIss_hyr 14 Hand vane undrained shear strength, remoulded (kNm-2)
clss_ppen i4 Pocket penetrometer undrained shear strength (kNm-2)
cIss_rem varchar(250) Comments/Details A

ad
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
samp_ref i4 Sample reference number
spec_ref i4 Specimen reference number K
grad_size f4 Sieve size
grad_perp f4 Percentage passing
grad_type varchar(10) Grading analysis test type
gread_rem varchar(250) Comments/Details A

vi
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tri
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
samp_ref i4 Sample reference number
spec_ref i4 Specimen reference number
trig_type varchar(10) Test type
trig_cond varchar(50) Sample condition
trig_rem varchar(250) Comments / Details A
trig_cu i4 Value of undrained shear strength (kNm-2)
trig_coh i4 Cohesion intercept associated with trig_phi (kNm-2)
trig_phi i4 Angle of friction for effective shear strength triaxial test

(deg)

trix
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
samp_ref i4 Sample reference number K
spec_ref i4 Specimen reference number K
trix_tesn i4 Triaxial test/stage number
trix_sdia i4 Specimen diameter (m)
trix_mc f4 Specimen initail moisture content
trix_cell i4 Total cell pressure (kNm-')
trix_devf i4 Deviator stress at failure (kNm-')
trix_slen i4 Sample length (m)
trix_bden f4 Initial bulk Density (Mgm-3)
trix_dden f4 Initial dry Density (Mgm-3)
trix_pwpi i4 Porewater pressure at start of shear test (kNm-1)
trix_pwpf i4 Porewater pressure at failure (kNm-')
trix_strn f4 Strain at failure
trix_mode varchar(40) Mode of failure

cbr
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
samp_ref i4 Sample reference number K
spec_ref i4 Specimen reference number K
cbrg_cond varchar(50) Sample condition
cbrg_meth varchar(100) Method of remoulding
cbrg_rem varchar(250) Comments / Details A
cbrg_nmc f4 Natural moisture content
cbrg_200 i4 Weight percent retained on 20mm sieve
cbrg_swel f4 Amount of swell recorded

vii
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cbrt
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
samp_ref i4 Sample reference number K
spec_ref i4 Specimen reference number K
cbrt_tesn i4 CBR test number
cbrt_top f4 CBR at top
cbrt_bot f4 CBR at bottom
cbrt_mct f4 Moisture content at top
cbrt_mcbt f4 Moisture content at bottom
cbrt_bden f4 Bulk Density (Mgm-3)
cbrt_dden f4 Dry Density (Mgm-3)

chem
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
samp_ref i4 Sample reference number
spec_ref 14 Specimen reference number
chem_tsul f4 Total sulphate content (%)
chem_asul f4 Sulphate aqueous extract 2:1 soil/water (g1-')
chem_wsul f4 Water sulphate content (g1-1)
chem_ph f4 Soil/water pH value
chem_rem varchar(250) Comments / Details A
chem_orgm varchar(250) Method of organic test
chem_org f4 Organic matter content (%)
chem_020 f4 Percentage passing 20 urn sieve (%)
chem_loi f4 Mass loss on ignition (%)
chem_co2m varchar(250) Method of carbonate test
chem_co2 f4 Carbonate content as CO, (%)
chem_acl f4 Percentage of acid soluble chloride ions (%)
chem_wc1 f4 Percentage of water soluble chloride ions (%)
chem_dcl i4 Dissolved chloride ions (mg1-1)
chem_cln varchar(250) Notes on chloride test
chem_tdsm varchar(250) Total dissolved solids. Test methods and notes
chem_tds f4 Total solids disolved in water (%)
chem_resm varchar(250) Resistivity test method
chem_res i4 Resistivity of soil sample corrected to 20 C (ohm)
chem_remc f4 Moisture content of sample for resistivity
chem_rebd f4 Bulk Density of sample for resistivity (Mgm-3)
chem_rdxm varchar(250) Redox test information
chem_rdx i4 Redox potential
chem_rdph f4 pH of redox sample

viii
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cong

Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code	 , K
hole_id varchar(10) Borehole / Trial Pit Code K
samp_ref i4 Sample reference number K
spec_ref i4 Specimen reference number K
cong_type varchar(10) Test type
cong_cond varchar(50) Sample Condition
cong_rem varchar(250) Comments / Details A
cong_incm f4 Coefficient of volume compressibility over cong_incd

(n2mN-2)

cong_incd varchar(40) Defined stress range (kNm2)
cong_dia i4 Test specimen diameter (mm)
cong_higt i4 Test specimen height (mm)
cong_mci f4 Initial moisture content (%)
cong_mcf f4 Final moisture content (%)
cong_bden f4 Initial bulk Density (Mgm-3)
cong_dden f4 Initial dry Density (Mgm-3)
cong_pden f4 Particle Density
cong_satr f4 Initial degree of saturation (%)
cong_sprs f4 Swelling pressure (kNm2)
cong_sath f4 Height change of specimen on saturation as % of original

height

cons
Field Name Field Type Field Description Remarks
proLid varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole I Trial Pit Code K
samp_ref i4 Sample reference number K
spec_ref i4 Specimen reference number K
cons_incn i4 Oedometer stress increment number
cons_ivr f4 Initial voids ratio
cons_incf f4 Stress at end of stress increment/decrement (kNm2)
cons_ince f4 Voids ratio at end of stress increment
cons_inmy f4 Coefficient of volume compressability over stress

increment
cons_incy f4 Coefficient of consolidation over stress increment

_ cons —insc f4 Coefficient of secondary compression over stress increment

chlk
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
samp_ref i4 Sample reference number K
spec_ref i4 Specimen reference number K
chlk_tesn i4 Chalk crushing test number
chlk_ccv f4 Chalk crushing value
chlk_mc f4 Chalk natural Moisture content
chlk_smc f4 Chalk saturated Moisture content
chlk_010 f4 Weight percent of material retained on 10nun sieve
chlk_rem varchar(250) Comments / Details A

ix
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rock
Field Name Field Type Field Descriptioni Remarks
I rojd

-
varchar 10

,
Pro ect / Site Investi.tation Code K

hole_id varchar 10 Borehole! Trial Pit Code K
samp_ref Ii4 Sample reference number K
spec_ref i4 Specimen reference number K
rock_pls f4 Uncorrected point load
rock_plsi 14 Size corrected point load index

rock_pltf varchar(10) Point load test type
rock_ucs f4 Uniaxial compressive strength (size corrected)
rock_prem varchar(250) Details of point load test A
rock_urem varchar(250) Details on uniaxial compressive test A
rock_e i4 Elastic modulus
rock_mu f4 Poissons ratio
rock_braz i4 Tensile strength by the Brazilian method
rock_brem varchar(250) Comments / Details on Brazilian method A
rock_sdi 14 Slake durability
rock_srem varchar(250) Remarks / details of slake durability test A
rock_poro f4 Rock porosity
rock_pore varchar(250) Notes on rock porosity test A
rock_mc f4 Natural moisture content
rock_dden f4 Rock dry Density (Mgm-3)
rock_soun f4 Soundness test
rock_mrem varchar(250) Notes on rock soundness test A

CM

Field Name Field Type Field Description Remarks
proi_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
samp_ref i4 Sample reference number K
spec_ref i4 Specimen reference number	 I K	 1

cmpg rem varchar(25()) Comments) Details A
cmpg_type varchar(30) Compaction test type
cmpg_mold varchar(50) Compaction mould type
cmpg_375 i4 Weight pecent of material retained on 37.5nun sieve
cmpg_200 i4 Weight pecent of material retained on 20nun sieve
cmpg_pden varchar(10) Particle Density (Mgm-3), measured or assumed
cmpg_maxd f4 Maximum Dry Density (Mgm-3)
cmpg_mcop f4 Moisture content at maximum Dry Density (Mgm-3)

cm t
Field Name Field Type Field Description

-
Remarks

proj_id varchar(10) Project / Site Investigation Code
hole_id varchar(10) Borehole / Trial Pit Code K
samp_ref i4 Sample reference number K
spec_ref i4 Specimen reference number K
cmpt_tssn i4 Compaction point number
cmpt_mc f4 Moisture content
cmpt_dden f4 Dry Density (Mgm-3) at cmpt_mc Moisture content

x
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icbr
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
icbr_dpth f4 Depth to top of CBR value K
icbr_rem varchar(250) Comments / Details A
icbr_icbr f4 CBR value

, icbr_mc f4 Moisture content relating to test

iden
Field Name Field Type Field Description Remarks
proLid varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
iden_dpth f4 Depth of in situ Density (Mgm-3) test K
iden_rem varchar(250) Comments / Details A
ideniden f4 In situ bulk Density (Mgm-3)
iden_mc f4 Moisture content relating to test

i rm
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
iprm_base f4 Depth to base of test zone K
iprm_top f4 Depth to top of test zone
iprm_type varchar(30) Test type
iprm_prwl f4 Depth to water in borehole or piezometer prior to test
iprm_swal f4 Depth to water at start of test
iprm_tdia f4 Diameter of test zone
iprm_sdia f4 Diameter of standpipe or casing
iprm_iprm f8 Permeability
iprm_rem varchar(250) Comments / Details A

irdx
Field Name  Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
irdx_dpth f4 Depth of redox test K
irdx_rem varchar(250) Comments / Details A
irdx_ph f4 pH
irdxirdx i4 Redox potential

ires
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
ires_dpth f4 Depth range to which in situ resitivity test relates K
ires_type varchar(30) Test type
ires_ires i4 Resitivity
ires_rem varchar(250) Comments / Details A

xi
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mcv

Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
samp_ref 14 Sample reference number
spec_ref i4 Specimen reference number K
mcvg_rem varchar(250) Comments / Details A
mcvg_200 i4 Weight percent of material retained on 20mm sieve
mcvg_nmc i4 Natural Moisture content
mcvg_prcl varchar(20) MCV precalibrated value, and indication of higher or lower

mcvt
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
samp_ref i4 Sample reference number K
spec_ref 14 Specimen reference number K
mcvt_tesn i4 MCV test number
mcvt_mc f4 MC
mcvt_relk f4 MCV value at mcvt_mc Moisture content
mcvt_bden f4 Bulk Density (Mgm-3) related to the mcvt_relk MCV

cone
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
conc_ref varchar(10) Cone Identification Reference K
conc_x f4 X coordinate on Calibration Curve
conc_y f4 Y coordinate on Calibration Curve
conc_date varchar(15) Date of calibration

stcn
Field Name Field Type Field Description Remarks

proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
stcn_dpth f4 Depth of result for static cone test
stcn_forc f4 Axial force
stcn_fric f4 Friction force on sleeve
stcn_res f4 Cone resistance
stcn_fres f4 Load unit side friction resistance
stcn_pwp1 f4 Porewater pressure
stcn_typ varchar(30) Cone test type
stcn_ref varchar(10) Cone Identification Reference
stcn_inc i4 Cone inclination from vertical
stcn_con f4 Conductivity
stcn_pwp2 f4 Second porewater pressure
stcn_temp i4 Temperature
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shb
Field Name Field Type Field Description

,
Remarks

proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar( 10) Borehole / Trial Pit Code K
samp_ref i4 Sample reference number K
spec_ref i4 Specimen reference number K
shbg_type varchar(50) Test type
shbg_rem varchar(250) Comments / Details A
shbg_pcoh f4 Peak cohesion intercept
shbg_phi f4 Peak angle of friction
shbg_rcoh f4 Residual cohesion intercept
shbg_rphi f4 Residual angle of friction

shbt
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code

-
K

hole_id varchar(10) Borehole! Trial Pit Code K
samp_ref i4 Sample reference number K
spec_ref i4 Specimen reference number K
shbt_tesn 14 Shear box stage number
shbt_mc f4 Specimen initail Moisture content
shbt_bden f4 Bulk Density (Mgm-3)
shbt_dden f4 Dry Density (Mgm-3)
shbt_norm i4 Shear box normal stress
shbt_disp f4 Displacement rate
shbt_peak f4 Shear box peak shear stress
shbt_res f4 Shear box residual shear stress
shbt_pdis f4 Displacement at peak shear stress
shbt_rdis f4 Displacement at residual shear stress
shbt_pden f4 Particle Density (Mgm-3)
shbt_ivr f4 Initail voids ratio
shbt mci f4 Initail Moisture content

, shbt_mcf f4 Final Moisture content

ivan
Field Name Field Type Field Description Remarks
projid varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
ivan_dpth f4 Depth of vane test K
ivan_rem varchar(100) Comments / Details A
ivan_ivan f4 Vane test result
ivan_ivar f4 Vane test result remoulded

tsrf
Field Name Field Type Field Description Remarks
test_name varchar(200) Full name of test
test_code varchar(20) Test code K
test_ref varchar(20) Reference for test
test_det varchar(300) Details of test A
test_tble varchar(4) Table of test

xiii
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reld
Field Name Field Type Field Description Remarks
proLid varchar(10) Project / Site investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
samp_ref i4 Sample reference number K
spec_ref 14 Specimen reference number 	 . K
reld_rem varchar(250) Comments / Details A
reld_dmax f4 Maximin Dry Density (Mgm-3)
reld_375 f4 Weight percent of sample retained on 37.5nrun sieve
reld_063 f4 Weight percent of sample retained on 6.3nun sieve
reld_020 f4 Weight percent of sample retained on 2nun sieve
reld_dmin f4 Minimum Dry Density (Mgm-3)

tst
Field Name Field Type Field Description Remarks
proLid varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
samp_ref i4 Sample reference number K
spec_ref i4 Specimen reference number K
ptst_tesn i4 Permiability test number
ptst_rem varchar(250) Comments / Details A
ptst_cond varchar(100) Sample condition
ptst_szun f4 Size cut off material too coarse for testing
ptst_uns f4 Proportion of material too coarse for testing
ptst_dia f4 Diameter of test sample
ptst_len f4 Length of test sample
ptst_mc f4 Initail Moisture content of test sample
ptst_bden f4 Initial bulk Density (Mgm-3) of test sample
ptst_dden f4 Dry Density (Mgm-3) of test sample
ptst_void f4 Voids ration of test sample
ptst_k f4 Coefficient of test sample
ptst_tstr f4 Mean effective stress at which permeability measured
ptst_isat f4 Inital degree of saturation
ptst_fsat f4 Final degree of saturation
ptst_pden f4 Particle Density (Mgm-3), measured or assumed

isrf
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
test_top f4 Depth to top of test K

_test_code varchar(20) Code of test used

lbrf
Field Name Field Type Field Description Remarks
proj_id varchar(10) Project / Site Investigation Code K
hole_id varchar(10) Borehole / Trial Pit Code K
samp_ref i2 Sample reference number K
spec_ref i2 Specimen reference number K

, test_code varchar(20) Test code

xiv
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Appendix 2

Percent Lists utilised in the Vasic methodology

Coarse Grained Soils

Amount-list Percent-list Amount-list Percent-list
[1,
[2,

0,
0,

0,
0,

0]
0]

[100,
[ 50,

0,
0,

0,0]
0, 0]

[1,
[1,

2,
1,

1,0]
2, 0]

[
[

65,
65,

15,
15,

5,
10,

0]
0]

[1, 1, 0, 0] [ 75, 25, 0, 0] [1, 1, 0, 2] [ 69, 25, 0, 3]
[1,
[1,

0,
0,

1,0]
0, 1]

[
[

90,
97,

0,
0,

10, 0]
0,3]

[1,
[1,

2,
0,

0,
1,

1]
2]

[
[

66,
84,

16,
0,

0,2]
10, 3]

[1, 1, 1, 0] [ 65, 25, 10,0] [1, 0, 2, 1] [ 77, 0, 10, 3]
[1,
[1,

1,
0,

0,
1,

1]
1]

[
[

72,
87,

25,
0,

0,3]
10, 3]

[1,
[1,

0,
0,

0,
3,

3]
0]

[
[

91,
70,

0,
0,

0,3]
10, 0]

[1, 1, 1, 1] [ 65, 23, 10, 2] [1, 3, 0, 0] [ 40, 20, 0, 0]
[1, 0, 0, 2] [ 94, 0, 0, 3] [2, 0, 0, 1] [ 48, 0, 0, 4]
[1, 0, 2, 0] [ 80, 0, 10, 0] [2, 0, 1, 0] [ 45, 0, 10, 0]
[1, 2, 0, 0] [ 66, 17, 0, 0] [2, 1, 0, 0] [ 37, 26, 0, 0]

Fine Grained Soils

Amount-list Percent-list Amount-list Percent-list
[1,
[2,

0,
0,

0, 0]
0, 0]

[100,
[ 50,

0,
0,

0,	 0]
0,	 01

[1,
[1,

0,
0,

0,
1,

2]
1]

[
[

50,
40,

0,
0,

0,25]
35, 25]

[1, 1, 0, 0] [ 35, 65, 0,	 0] [1, 0, 2, 0] [ 40, 0, 30, 0]
[1, 0, 1, 0] [ 50, 0, 50,	 0] [1, 2, 0, 0] [ 36, 32, 0, 0]
[1, 0, 0, 1] [ 65, 0, 0,35] [1, 0, 1, 2] [ 40, 0, 30, 15]
[1, 1, 1, 0] [ 35, 40, 25,	 0] [1, 1, 0, 2] [ 35, 35, 0, 15]
[1, 1, 0, 1] [ 35, 45, 0,20] [1, 0, 2, 1] [ 35, 0, 25, 15]
[1, 1, 2, 0] [ 35, 25, 20,	 0] [1, 2, 0, 1] [ 35, 30, 0, 5]
[2, 0, 0, 1] [ 40, 0, 0, 20] [1, 2, 1, 0] [ 35, 25, 15, 0]
[2,
[2,

0,
1,

1,0]
0, 0]

[
[

35,
35,

0,
30,

30,	 0]
0,	 0]

[1, 1, 1, 1] [ 35, 35, 20, 10]
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Appendix 3

Example of SQL script files used for the generation and
alteration of the GeoTec database

create table ctcl
(
proj_id	 varchar(1 0 ),
hole_id	 varchar(10),
lay_no	 i2,
strt_no	 i2,
cons_no	 i2
ctcl_clno	 i2
ctcl_mcl 1	 varchar(30),
ctcl_mc12	 varchar(30),
ctcl_scl	 varchar(30),
ctcl_mod	 varchar(30),
ctcl_strc	 varchar(30)
)

create table lbrf
(
proj_id	 varchar(10),
hole_id	 varchar(10),
samp_ref	 i2,
test_code	 varchar(20)
) with noduplicates

create table isrf
(
proj_id	 varchar(10),
hole_id	 varchar(10),
samp_top float4,
test_code	 varchar(20)
) with noduplicates

create table tstr
(
test_name	 varchar(200),
test_code	 varchar(20),
test_ref	 varchar(20),
test_det	 varchar(300),
test_tble	 varchar(4)
) with noduplicates
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A ProiectilPleil IWO

Project ID

Project Name

Location

Grid Reference

Start Date

Finish Date

aient

Contractor

Engineer

OK)	 Cancel

Bare..

Project ID

Borehole ID

Easting

Northing

Ground Level

Start Date

Finish Date

Borehole Type

Logged By

Remarks

Another('

w.t.14,4*
Top Menu I	 Cancel 

- MA Fie10.410“,3e$L,Paia:fn 

Project ID

Borehole ID

Depth (m)

U.S.S. (kNilv112)

U.S.S. rem (kNilyr2)

Remarks

Enter I	 r Canceli

Appendix 4

Examples of GeoTec data entry interfaces via SIGMA
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Appendix 7

Data Access Slots available on a Source class object in the
mapping domain

AdditionalWhereString Utilised in generating the SQL. Described fully in
Section 6.4.3

AfterRowProcessed! User defined method that allows immediate post
processing of data on import

Class Domain class object associated with the table
ComputeDeleteString! System method to compute the Delete! method
ComputeInsertString! System method to compute the Insert! method
ComputeSQLString! System method to compute the SQL string for the Get!

method
ComputeUpdateString! System method to compute the Update! method
ComputeUlD! System method to compute column values for UID
ComputeUIDName! System method to compute the MD name

Connection Name of connection object for current database session
ConnectionType System database specific connection type object
Delete! System method for deletion of database table rows
DeleteInstances! System method to delete all instances of a domain class

object
FinishSource! Generates and caches SQL string
Get! System data retrieval method
Insert! System data insert method
InstanceModule Specifies the module in which the domain instance

objects are created
Joins Lists joins between data tables and how they are joined
Number0fRowsProcessed Automatically filled with number of instances processed

on either Get!, Insert!, Update! or Delete!
PrimaryTable Primary table object and alias
SendSQL! Sends arbitary SQL to the database
SlotMaps Lists slot maps for source mapping
Tables Lists tables for source mapping
UIDColumns Lists columns that make up the UID
Update! System update method
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Appendix 8

ProTalk code written for SIGMA



#include<prk/lib.pth>

/* parser_sys.ptk */
/* *1

/* Contains the system files to run the soil description parser. All other*/
/* functions contained in parser_meth, _func and _comps*/

/* SIGMA - System for the Interpretation of site investiGation inforMAtion*/
/* University of Durham, GeoTechnical Systems Group*/

/* Andy Oliver - June 1994*1

function initial(?desc)

/* Main initialiser function. Places the description into the PartSD slot*/
/* on SoilDes for begining of run and creates the first Soil class and Kalker*/

SoilDes.PartSD = check_desc(?desc);
?soil_name = ConvertToSymbol("Soill");
MakeClass(?soil_name, PSD, SoilDes, s (soil_no, soil_cons, soil_mscd, soil_mstp,

soil_psty, soil_strc, soil_wthg));
set slt(?soil_name); /* Set the correct inheritence type for Soill */
MakeClass(Kalker, PSD, SoilDes,

s (ModKalk, PosiKalk, range, hit ,SoilCnt, SoilTypeCnt,
SoilStruCnt, ColCnt,
Shape, Texture, Grading, Structure, Spacing, WithFlag, Distribution));

/* Initialise all Kalker slots */
Kalker.SoilStruCnt = 1;
create_Kalker_sub();
Kalker.WithFlag = "Disabled"; Kalker.range ""; Kallcer.ModKalk 
Kalker.Grading ""; Kalker.Distribution = ""; Kalker.Structure =
Kalker.Spacing = ""; Kalker.SoilCnt = 1; Soill.soil_no=1;
Kalker.SoilTypeCnt = 0; Kalker.ColCnt = 1; Kalker.hit = "";
exe 1 .Values = Null; ex11.Values = Null;

function check_desc(?desc)
1
/* Ensures that the last element of description is a string. This is */
/* how the parser knows it has reached the end of the description */

bound inputs;
if Substring(?desc, StringLength(?desc)-1, StringLength(?desc)) != " ";
then ?desc = AppendStrings(?desc," ");



return ?desc;
)

function create_Kalker_sub()
{
/* Sets up the initial sub classes for Kalker, that is Structure and Colour */

MakeClass(KalkColl, PSD, Kalker, '(slcl_clno, slcl_mc11, slcl_mc12,
slcl_mod, slcl_scl, slcl_strc));

?kst_name = ConvertToSymbol(AppendStrings("KalkStr",
ConvertToString(Kalker.SoilStruCnt)));

MakeClass(?kst_name, PSD, Kalker, s (slst stet, slst spc, slst_dcon,
slst_dip, slst_omt, slst_srf, slst_stno));

?kst_name.slst_stno = Kalker.SoilStruCnt;

}

function set_slt(?soil_name)

{
/* Sets Soil inheritence types. C: construct is a way of embedding C code in ProTalk */

?soil_name = ConvertToSymbol(?soil_name);
C:PrkSetSlotType(?soil_name, s soil_cons, 3);
C:PrkSetSlotType(?soil_name, 'soil_mscd, 3);
C:PrkSetSlotType(?soil_name, s soil_psty, 3);
C:PrkSetSlotType(?soil_name, 'soil_wthg, 3);
C:PrkSetSlotType(?soil_name, 'soil_strc, 3);
C:PrkSetSlotType(?soil_name, s soil_mstp, 3);

?soil_name.soil_cons =
I

function set_slots(?str_name)

{
/* Sets inheritence types. C: construct is a way of embedding C code in ProTalk */

bound inputs;
C:PrkSetSlotType(?str narne, s sldt_shp, 3);
C:PrkSetSlotType(?str_name, 'sldt dstb, 3);
C:PrkSetSlotType(?str_name, 'sldt_amnt, 3);
C:PrkSetSlotType(?str_name, s sldt_type, 3);
C:PrkSetSlotType(?str_name, 'sldt_grdg, 3);
C:PrkSetSlotType(?str_name, s sldt_txt, 3);

I



function class_init(?st_type)
{
/* Initialises soil_type slots */

?st_type = ConvertToSymbol(?st_type);
?st_type.sldt_shp =
?st_type.sldt_txt =

}

function translate()
{
/* Sets the shape, texture,grading and distribution slots on the newly created *t
/* constituent level */

select
{
case: Kalker.Shape != "";

{
?st_name = AppendStrings("Soil", ConvertToString(Kalker.SoilCnt), "St",

ConvertToString(Kalker.SoilTypeCnt));
?st_name = ConvertToSymbol(?st_name);
?st_name.sldt_shp = Kalker.Shape;
Kalker.Shape = "";

}
case: Kalker.Texture !=  ';

{
?st_name = AppendStrings("Soil", ConvertToString(Kalker.SoilCnt), "St",

ConvertToString(Kalker.SoilTypeCnt));
?st_narne = ConvertToSymbol(?st_name);
?st_name.sldt_txt = Kalker.Texture;
Kalker.Texture = "";

}

case: Kalker.Grading != "";
{

?st_name = AppendStrings("Soil", ConvertToString(Kalker.SoilCnt), "St",
ConvertToString(Kalker.SoilTypeCnt));

?st_name = ConvertToSymbol(?st_name);
Kallcer.Grading = ConvertToString(Kalker.Grading);
if Substring(Kalker.Grading, StringLength(Kalker.Grading)-2,

StringLength(Kalker.Grading)) == ", ";
then Kalker.Grading = Substring(Kalker.Grading, 0,

StringLength(Kalker.Grading)-2);
?st_name.sldt_grdg = Kalker.Grading;
Kalker.Grading = "";



1

case: Kalker.Distribution != "";
{

?st_name = AppendStrings("Soil", ConvertToString(Kalker.SoilCnt), "St",
ConvertToString(Kalker.SoilTypeCnt));

?st_name = ConvertToSymbol(?st_name);
Kalker.Distribution = ConvertToString(Kalker.Distribution);
if Substring(Kallcer.Distribution, StringLength(Kallcer.Distribution)-2,

StringLength(Kalker.Distribution)) == ", ";
then Kalker.Distribution = Substring(Kalker.Distribution, 0,

StringLength(Kalker.Distribution)-2);
?st_name.sldt_dstb = Kalker.Distribution;
Kalker.Distribution = ";

)

function check_col(?word)
{
/* Checks coolour against the relevant vocabularly list. Seperate function due to */
/* the complexity of colour function. Called several times so seperated as *I
/* distinct function to save duplication*/

?word = ConvertToString(?word);
?chk_flag = 0;

?chk = FindListElmt(all colour.comparison_list, ?word);

if ?chk != '();
then ?chk_flag = 1;

return ?chk_flag;
)

function remover(?starter)

{
bound inputs;

/* Generic function that removes hierarchies prior to starting processing, removes */
/* all subclasses below object passed as ?starter */

?name = find direct subclassof ?starter;
for IsObject(?name);



do

for ?name2 = find direct subclassof ?name;
do {

for IsObject(?name2);
do (

for ?name3 = find direct subclassof ?name2;
do (

DeleteObject(?name3);
fail;

DeleteObject(?name2);
fail;

DeleteObject(?name);
rem over(?starter);

function check_str(?kst_name)

/* Checks to see if new structure subclass of Kalker is required, utilising the */
/* structure counter on Kalker itself */

if not IsObject(FindObject(?kst_name));
MakeClass(?kst_name, PSD, Kalker, '(slst_stct, slst spc, slst_dcon,

slst_dip, sIst_ornt, slst_srf, slst stno));
?kst_name.slst_stno = Kalker.SoilStruCnt;

function conv_kallc_sub()

/* Converts the colour and structure subclasses of kalker to their appropriate */
/* form for transfer to GeoTec. Called when either a Strata or parse is complete*/

?soil_name = ConvertToSymbol(AppendStrings
("Soil", ConvertToString(Kalker.SoilCnt)));

?st_name = AppendStrings(ConvertToString(?soil_name),
"St", ConvertToString(Kalker.SoilTypeCnt));

for ?n = find direct subclassof Kalker;
do (



select
{
case:Substring(?n, 4, 5) ==

{
?str_num = Substring(?n, 7, 8);
?str_name = ConvertToSymbol(AppendStrings(ConvertToString

(?soil_name),"Str", ?str_num));
if ?n.slst stct != Null;
then (

?slot_list = '(slst_stct, slst_spc, slst_dcon,
slst_dip, slst_ornt, slst_srf, slst_stno);

MakeClass(?str_name, PSD, ?soil_name, ?slot_list);

for ?list_mem inlist ?slot_list;
do ?str_name.?list_mem = ?n.?list_mem;
fail;

1
1

case:Substring(?n, 4, 5) =="C";
{

?col_num = Substring(?n, 7, 8);
?col_name=ConvertToSymbol(AppendStrings

(ConvertToString(?st_name),
"C", ?col_num));

if ?n.slcl_mcll != Null;
then (

?slot_list = s (slcl_clno, slcl_mc11, slcl_mc12,
slcl_mod, slcl_scl, slcl_strc);

MakeClass(?col_name, PSD, ?st_name, ?slot_list);
for ?list_mem inlist ?slot list;
do ?col_name.?list_mem = ?n.?list_mem;
fail;

}
1

}
}
remover(Kalker);
Kalker.ColCnt = 1;

1

function placer(?insert_list)
(
/* Takes the finished parsed model, makes the relevant instances and places them *1
/* in the GeoTec database. Called from export react*/



bound inputs;
for ?soil inlist '(find direct subclassof SoilDes@);
do (

if Substring(ConvertToString(?soil),0,4) == "Soil";
then {

?soil_name = soil_Source.ComputeUIDName!C(soil@), '(?soil.proj jd,
?soil.hole_id,
?soil.lay_no,
?soil.soil_no));

MakeInstance(?soil_name, Sig93D, soil@);
fill_inst(?soil_name, ?soil);
for ?elmt inlist "(find direct subclassof ?soil);
do {

if StringLength(ConvertToString(?elmt)) == 8;
then {

?inst_name = sldt_Source.ComputeUIDName!C(sldt@),
'(?elint.proj_id,
?elmthole_id,
?elmtlay_no,
?elmt.soil_no,
?elmtcons_no));

MakeInstance(?inst_name, Sig93D, sldt@);
fill_inst(?inst_name, ?elmt);

}
else (

?str_name = sIst_Source.ComputeUIDName!C(slst@),
'(?elmtproj_id,
?eliathole_id,
?elmtlay_no,
?elmtsoil_no,
?elmtslst stno));

MakeInstance(?str_name, Sig93D, sIst@);
fill_inst(?str_name, ?elmt);

}
for ?cs inlist all subclassof ?elmt;
do (

?col_name = slcl_Source.ComputeUIDName!C(sIcl@),
'(?cs.proj_id,
?cs.hole_id,
?cs.lay_no,
?cs.soil_no,
?cs.cons_no,
?cs.slcl_clno));

MakeInstance(?col_name, Sig93D, slcl@);



fill_inst(?col_name, ?cs);

for ?ins_obj inlist ?insert_list; /* uses insert list to determine those to be */
/* placed*/

do (
for ?insert inlist all instanceof ?ins_obj;
do {

?source = ConvertToSymbol(AppendStrings(?ins_obj,"_Source"));
?source.Insert!(FindObject(?insert));
?source.SendSQL!("commit");
DeleteObject(?insert);

1

function fill_inst(?inst_name, ?sub_name)

/* automatically transfers the data, that is the slot values, into the appropriate */
/* slots on the SIG93D instances. */

bound inputs;
for ?slt inlist ObjectSlots(?sub_name);
do ?inst_name.?slt = ?sub_name.?slt;

1



#include <prk/lib.pth>

/* parser_func.ptk */
/* */
/* Contains the non-standard soil identification and main structure clauses *1

/* for the parser, as well as the main loop function soil_parsel*/
/* All other functions contained in parser_meth, _sys and _comps*/

/* SIGMA - System for the Interpretation of site investiGation inforMAtion*/
/* University of Durham, GeoTechnical Systems Group *1

/* Andy Oliver - June 1994*1

function starter(?desc)
(
/* called by main React to run parser*/

remover(SoilDes); /* clears working area to initial state */
initial(?desc); /* initialises domain and kallcer variables */
soil_parsel(); /* main parsing loop function */

1

function soil_parsel0
{
/* main parsing loop function */

?desc = ConvertToString(SoilDes.PartSD);

extract(?desc, ?fs, ?Is); /* extracts the next term to be parsed */

SoilDes.PartSD = ?Is; /* sets remainder of description for next pass */

SetDialogBoxControlValue(parsel, St6, Values, AppendStrings("Currently parsing ",
ConvertToString(?fs)));

Print(" Parsing", ?fs, "...\n");

for ?i inlist all subclassof parser; /* non-deterministic call to all subclasses of */
/* parser that passes the term bound to ?fs to */
/* all of the clauses in turn*/

do ?i.parser_clause!(?fs, ?Is);

Kalker.ModKaLk =
if Kalker.hit == ""; /* if no clauses identified the term, then start exception */



1* handling routines*/
then (

ex11.SelectionItems +== ?fs;
SoilDes.except_flag = 1;
PrintLine(?fs," is unknown to the parser);
SetDialogBoxControlValue(parsel, St6, Values,

AppendStrings("Unknown term", ?fs));
I
Kallcer.hit =
if StringLength(?1s)>O;
then soil_parsel();
else ( /* description completed */

conv_kalk_sub();
DeleteObject(Kalker);
if ListLength(all ex11.SelectionItems) > 0; /* check for exception handling */
then SetDialogBoxControlValue(parsel, St6, Values,

"Complete exception terms\nbefore continuing");
else SetDialogBoxControlValue(parsel, St6, Values, "Data parsing completed.");

I
I

method soil_type.parser_clause!(?word, ?Is)

{
/* Identifies main, secondary, major and minor constituents*/

?word = ConvertToString(?word);
if ?word == "very";

then
{

?amount = "major";
extract(?1s, ?word2, ?rest);
?test = sec_st(?word2, ?amount);
if ?test == "pass";
then SoilDes.PartSD = ?rest;

I

if ?word == "slightly";
then
{

?amount = "minor";
extract(?1s, ?word2, ?rest);
?test = sec_st(?word2, ?amount);
if ?test == "pass";
then SoilDes.PartSD = ?rest;



1

?test = sec_st(?word, "secondary"); 	 /* tests for secondary */
main_st(?word); /* tests for main */

1

function main_st(?word)

/* Identifies the main soil type. Due to the implemenataion of With, this is */
/* a 2 stage process depending on current whereabouts in the description. If With */
/* has already been identified the main object exists, if not it requires creating*/

?soil_name = AppendStrings("Soil", ConvertToString(Kalker.SoilCnt));
?chk = FindListElmt(all soil_type.comparison_list, ?word);

if ?chk != '();
then

select

case:ConvertToString('Kalker.WithFlag) == "Enabled";

Kalker.WithFlag = "Disabled";
?st_name = AppendStrings(?soil_name, "St",

ConvertToString(Kalker.SoilTypeCnt));
?st_name = ConvertToSymbol(?st_name);
?st name.sldt type = ?word; check_main(?soil_name, ?word);
Kalker.hit = "hit";
conv_kalk_sub(); translate();
create_Kalker_sub();

1
case:ConvertToString('Kalker.WithFlag) .= "Disabled";

Kalker.SoilTypeCnt = Kalker.SoilTypeCnt+1;
?st_name = AppendStrings(?soil_name, "St",

ConvertToString(Kalker.SoilTypeCnt));
MakeClass(?st_name, PSD, ?soil_name, s (sldt_type, sldt_amnt, soil_no,

cons_no, sldt_shp, sldt_grdg,
sldt_txt, sldt_dstb));

set_slots(?st name);
class_init(?st_name);
?st_name = ConvertToSymbol(?st_name);
?st_name.sldt type = ?word; check_main(?soil_name, ?word);
?st_name.sldt_amnt="main";



?st_name.cons_no = Kalker.SoilTypeCnt;
Kalker.hit = "hit";
conv_kalk_sub(); translate();
create_Kalker_sub();

I
I

I

1

function check_main(?soil_name, ?word)

{
/* Enables two main soil types to be handled, ie Sand and Gravel [sand / gravel] */

?soil_name = ConvertToSymbol(?soil_name);
if ?soil_name.soil_mstp == Null;
then ?soil_name.soil_mstp = ?word;

else	 ?soil_name.soil_mstp
AppendStrings(?soil_name.soil_mstp,"/",ConvertToString(?word));
I

function sec_st(?word, ?amount)

{
/* identifies secondary constituents and creates the appropriate objects where */
/* required. Operates on a test basis as it is called from soil_type.parser_clause*/

?ans = "fail";
?soil_name = AppendStrings("Soil", ConvertToString(Kalker.SoilCnt));
?word_len = StringLength(?word);
if Substring(?word, ?word_len-1, ?word_len) ==
then
{

?test = FindSubstring(?word, "ey");
if ?test<0;
then ?test = FindSubstring(?word, lily");
if ?test<0;
then ?test = ?word_len-1;
?word = Substring(?word, 0, ?test);

?chk = FindListElmt(all soil_type.comparison_list, ?word);

if ?chk != '();
then



1

Kalker.SoilTypeCnt = Kalker.SoilTypeCnt+1;
?st_name = AppendStrings(ConvertToString(?soil_name), "St",

ConvertToString(Kalker.SoilTypeCnt));
MakeClass(?st_name, PSD, ?soil_name, '(sldt_type, sIdt_amnt, soil_no,

cons_no,
sldt_shp, sldt_grdg, sldt_txt, sldt_dstb));

Kalker.hit ="hit";
set_slots(?st_name);
classinit(?st_name);
?st_name = ConvertToSymbol(?st_name);
?st_name.sldt_type=?word; ?st name.sldt_amnt=?amount;
?st_name.cons_no = Kalker.SoilTypeCnt;
?ans = "pass";

}
I
return ?ans;

I

function extract(?desc, ?fs, ?Is)
(
/* main extract clause, utilsed from soil_parsel and whichever multi-term clauses */
/* that require their own extraction */

?first = FindSubstring(?desc, " ");
?last = StringLength(?desc);
?fs = Substring(?desc, 0, ?first);
?ls = Substring(?desc, ?first+1, ?last);

I

function modify(?word, ?ls)
1
/* tests for modifiers for all parser clauses */

?word = ConvertToString(?word);
for ?comp_var inlist '("very", "medium", "slightly", "low",

"high", "intermediate", "extremely");
do (

if ?word == ?comp_var;
then (

extract(?1s, ?word2, ?rest);
?word = ConvertToString(?word2);



SoilDes.PartSD = 7rest;
?Is = ?rest;
Kalker.ModKalk AppendStrings(?comp_var, " ");

return ?word;

method with_it.parser_clause!(?word, ?Is)

/* Identifies with and its related phraseology. Requires up to 3 terms to */
/* be extracted to identify the full meaning of the phrase*/

?soil_name = AppendStrings("Soil", ConvertToString(Kalker.SoilCnt));
if ?word == "with";
{	 extract(?1s, ?word2, ?rest);

?word2 = ConvertToString(?word2);
select

case: ListLength(FindListElmt(all inclusion.comparison_list, ?word2)) > 0;

make_new_soil("dominant", ?rest, ?word2);
fail;

case:?word2 == "some";
?amount = "secondary";?word = ?word2;)

case:?word2 == "few";
{ ?amount = "secondary";?word = ?word2;

case:?word2 == "occasional";
{?amount = "minor" ;?word = 7word2;

case:?word2 == "numerous";
{?amount = "major" ;?word = ?word2;

case:?word2 == "many";
{ ?amount = "major";?word = ?word2;

case:?word2 == "frequent";
?amount = "major";?word ?word2;

case:?word2 == "a";

extract(?rest, ?word3, ?restl);
select

case:?word3 =="little";

?amount = "minor";



?rest = ?restl;
?word = ?word3;

}
case:?word3 =="trace";

{
extracOrest, ?word4, ?rest2);
?amount = "minor";
?rest = ?rest2;
?word = ?word4;

}
I

I
otherwise: { Kalker.hit = "hit";return;}

I
Kalker.WithFlag = "Enabled";
Kallcer.SoilTypeCnt = Kalker.SoilTypeCnt+1;
?st name = AppendStrings(ConvertToSymbol(?soil_name), "St",

ConvertToString(Kalker.SoilTypeCnt));
MakeClass(?st_name, PSD, ?soil_name, s (sldt_type, sldt_amnt, soil_no, cons_no,

sldt_shp, sldt_grdg, sldt_txt, sldt_dstb));
?st name = ConvertToSymbol(?st_name);
?st name.cons_no = Kalker.SoilTypeCnt;
set_slots(?st_name); class_init(?st name);
?st_name = ConvertToSymbol(?st_name);
?st name.sIdt_amnt=?amount;
SoilDes.PartSD = ConvertToString(?rest);
Kalker.hit = "hit";

}
}

method and_it.parser_clause!(?word, ?Is)
{
/* Identifies 'and' which signifies two amin soil types *1

if ?word == "and";
then (

conv_kalk_sub();
Kalker.SoilCnt = Kalker.SoilCnt + 1;
?soil_name = ConvertToSymbol(AppendStrings("Soil",

ConvertToString(Kalker.SoilCnt)));
MakeClass(?soil_name, PSD, SoilDes, s (soil_no, soil_cons, soil_mscd, soil_mstp,

soil_psty, soil_strc, soil_wthg));
?soil_name.soil_no = Kalker.SoilCnt;
set_slt(?soil_name);
Kalker.SoilTypeCnt = 0;



Kalker.ColCnt = 1;
Kalker.SoilStruCnt = 1;
create_Kalker_sub();
SoilDes.PartSD = ?ls;
Kalker.hit = "hit";

I

}

function wrapper(?desc)
(
/* wraps soil description round to look nice, used in parser. Could be improved */
/* by passing the width to be formatted, set here to max of 43 (?) */

bound inputs;
?loop = -1;
?len = StringLength(?desc);
?count = ConvertToFixnum(?len/50);

while ?loop != ?count-1;
do (

?loop = ?loop + 1;
?i =43 + ?loop*50;
while Substring(?desc, ?i, ?i+1) !='
do ?i = ?i + 1;
?desc = AppendStrings(Substring(?desc, 0, ?i), "VI", Substring(?desc,?i+1));

I
return ?desc;

}
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